/////////////////////////////////////////////////////////////////////// // File: convolve.cpp // Description: Convolutional layer that stacks the inputs over its rectangle // and pulls in random data to fill out-of-input inputs. // Output is therefore same size as its input, but deeper. // Author: Ray Smith // Created: Tue Mar 18 16:56:06 PST 2014 // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "convolve.h" #include "networkscratch.h" #include "serialis.h" namespace tesseract { Convolve::Convolve(const STRING& name, int ni, int half_x, int half_y) : Network(NT_CONVOLVE, name, ni, ni * (2*half_x + 1) * (2*half_y + 1)), half_x_(half_x), half_y_(half_y) { } // Writes to the given file. Returns false in case of error. bool Convolve::Serialize(TFile* fp) const { return Network::Serialize(fp) && fp->Serialize(&half_x_) && fp->Serialize(&half_y_); } // Reads from the given file. Returns false in case of error. bool Convolve::DeSerialize(TFile* fp) { if (!fp->DeSerialize(&half_x_)) return false; if (!fp->DeSerialize(&half_y_)) return false; no_ = ni_ * (2*half_x_ + 1) * (2*half_y_ + 1); return true; } // Runs forward propagation of activations on the input line. // See NetworkCpp for a detailed discussion of the arguments. void Convolve::Forward(bool debug, const NetworkIO& input, const TransposedArray* input_transpose, NetworkScratch* scratch, NetworkIO* output) { output->Resize(input, no_); int y_scale = 2 * half_y_ + 1; StrideMap::Index dest_index(output->stride_map()); do { // Stack x_scale groups of y_scale * ni_ inputs together. int t = dest_index.t(); int out_ix = 0; for (int x = -half_x_; x <= half_x_; ++x, out_ix += y_scale * ni_) { StrideMap::Index x_index(dest_index); if (!x_index.AddOffset(x, FD_WIDTH)) { // This x is outside the image. output->Randomize(t, out_ix, y_scale * ni_, randomizer_); } else { int out_iy = out_ix; for (int y = -half_y_; y <= half_y_; ++y, out_iy += ni_) { StrideMap::Index y_index(x_index); if (!y_index.AddOffset(y, FD_HEIGHT)) { // This y is outside the image. output->Randomize(t, out_iy, ni_, randomizer_); } else { output->CopyTimeStepGeneral(t, out_iy, ni_, input, y_index.t(), 0); } } } } } while (dest_index.Increment()); if (debug) DisplayForward(*output); } // Runs backward propagation of errors on the deltas line. // See NetworkCpp for a detailed discussion of the arguments. bool Convolve::Backward(bool debug, const NetworkIO& fwd_deltas, NetworkScratch* scratch, NetworkIO* back_deltas) { back_deltas->Resize(fwd_deltas, ni_); NetworkScratch::IO delta_sum; delta_sum.ResizeFloat(fwd_deltas, ni_, scratch); delta_sum->Zero(); int y_scale = 2 * half_y_ + 1; StrideMap::Index src_index(fwd_deltas.stride_map()); do { // Stack x_scale groups of y_scale * ni_ inputs together. int t = src_index.t(); int out_ix = 0; for (int x = -half_x_; x <= half_x_; ++x, out_ix += y_scale * ni_) { StrideMap::Index x_index(src_index); if (x_index.AddOffset(x, FD_WIDTH)) { int out_iy = out_ix; for (int y = -half_y_; y <= half_y_; ++y, out_iy += ni_) { StrideMap::Index y_index(x_index); if (y_index.AddOffset(y, FD_HEIGHT)) { fwd_deltas.AddTimeStepPart(t, out_iy, ni_, delta_sum->f(y_index.t())); } } } } } while (src_index.Increment()); back_deltas->CopyAll(*delta_sum); return true; } } // namespace tesseract.