/////////////////////////////////////////////////////////////////////// // File: recodebeam.cpp // Description: Beam search to decode from the re-encoded CJK as a sequence of // smaller numbers in place of a single large code. // Author: Ray Smith // // (C) Copyright 2015, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include "recodebeam.h" #include "networkio.h" #include "pageres.h" #include "unicharcompress.h" #include #include #include #include #include #include namespace tesseract { // Clipping value for certainty inside Tesseract. Reflects the minimum value // of certainty that will be returned by ExtractBestPathAsUnicharIds. // Supposedly on a uniform scale that can be compared across languages and // engines. const float RecodeBeamSearch::kMinCertainty = -20.0f; // The beam width at each code position. const int RecodeBeamSearch::kBeamWidths[RecodedCharID::kMaxCodeLen + 1] = { 5, 10, 16, 16, 16, 16, 16, 16, 16, 16, }; const char* kNodeContNames[] = {"Anything", "OnlyDup", "NoDup"}; // Prints debug details of the node. void RecodeNode::Print(int null_char, const UNICHARSET& unicharset, int depth) const { if (code == null_char) { tprintf("null_char"); } else { tprintf("label=%d, uid=%d=%s", code, unichar_id, unicharset.debug_str(unichar_id).string()); } tprintf(" score=%g, c=%g,%s%s%s perm=%d, hash=%lx", score, certainty, start_of_dawg ? " DawgStart" : "", start_of_word ? " Start" : "", end_of_word ? " End" : "", permuter, code_hash); if (depth > 0 && prev != nullptr) { tprintf(" prev:"); prev->Print(null_char, unicharset, depth - 1); } else { tprintf("\n"); } } // Borrows the pointer, which is expected to survive until *this is deleted. RecodeBeamSearch::RecodeBeamSearch(const UnicharCompress& recoder, int null_char, bool simple_text, Dict* dict) : recoder_(recoder), beam_size_(0), top_code_(-1), second_code_(-1), dict_(dict), space_delimited_(true), is_simple_text_(simple_text), null_char_(null_char) { if (dict_ != nullptr && !dict_->IsSpaceDelimitedLang()) space_delimited_ = false; } // Decodes the set of network outputs, storing the lattice internally. void RecodeBeamSearch::Decode(const NetworkIO& output, double dict_ratio, double cert_offset, double worst_dict_cert, const UNICHARSET* charset, int lstm_choice_mode) { beam_size_ = 0; int width = output.Width(); if (lstm_choice_mode) timesteps.clear(); for (int t = 0; t < width; ++t) { ComputeTopN(output.f(t), output.NumFeatures(), kBeamWidths[0]); DecodeStep(output.f(t), t, dict_ratio, cert_offset, worst_dict_cert, charset); if (lstm_choice_mode) { SaveMostCertainChoices(output.f(t), output.NumFeatures(), charset, t); } } } void RecodeBeamSearch::Decode(const GENERIC_2D_ARRAY& output, double dict_ratio, double cert_offset, double worst_dict_cert, const UNICHARSET* charset) { beam_size_ = 0; int width = output.dim1(); for (int t = 0; t < width; ++t) { ComputeTopN(output[t], output.dim2(), kBeamWidths[0]); DecodeStep(output[t], t, dict_ratio, cert_offset, worst_dict_cert, charset); } } void RecodeBeamSearch::SaveMostCertainChoices(const float* outputs, int num_outputs, const UNICHARSET* charset, int xCoord) { std::vector> choices; for (int i = 0; i < num_outputs; ++i) { if (outputs[i] >= 0.01f) { const char* character; if (i + 2 >= num_outputs) { character = ""; } else if (i > 0) { character = charset->id_to_unichar_ext(i + 2); } else { character = charset->id_to_unichar_ext(i); } size_t pos = 0; //order the possible choices within one timestep //beginning with the most likely while (choices.size() > pos && choices[pos].second > outputs[i]) { pos++; } choices.insert(choices.begin() + pos, std::pair(character, outputs[i])); } } timesteps.push_back(choices); } // Returns the best path as labels/scores/xcoords similar to simple CTC. void RecodeBeamSearch::ExtractBestPathAsLabels( GenericVector* labels, GenericVector* xcoords) const { labels->truncate(0); xcoords->truncate(0); GenericVector best_nodes; ExtractBestPaths(&best_nodes, nullptr); // Now just run CTC on the best nodes. int t = 0; int width = best_nodes.size(); while (t < width) { int label = best_nodes[t]->code; if (label != null_char_) { labels->push_back(label); xcoords->push_back(t); } while (++t < width && !is_simple_text_ && best_nodes[t]->code == label) { } } xcoords->push_back(width); } // Returns the best path as unichar-ids/certs/ratings/xcoords skipping // duplicates, nulls and intermediate parts. void RecodeBeamSearch::ExtractBestPathAsUnicharIds( bool debug, const UNICHARSET* unicharset, GenericVector* unichar_ids, GenericVector* certs, GenericVector* ratings, GenericVector* xcoords) const { GenericVector best_nodes; ExtractBestPaths(&best_nodes, nullptr); ExtractPathAsUnicharIds(best_nodes, unichar_ids, certs, ratings, xcoords); if (debug) { DebugPath(unicharset, best_nodes); DebugUnicharPath(unicharset, best_nodes, *unichar_ids, *certs, *ratings, *xcoords); } } // Returns the best path as a set of WERD_RES. void RecodeBeamSearch::ExtractBestPathAsWords(const TBOX& line_box, float scale_factor, bool debug, const UNICHARSET* unicharset, PointerVector* words, int lstm_choice_mode) { words->truncate(0); GenericVector unichar_ids; GenericVector certs; GenericVector ratings; GenericVector xcoords; GenericVector best_nodes; GenericVector second_nodes; std::deque> best_choices; ExtractBestPaths(&best_nodes, &second_nodes); if (debug) { DebugPath(unicharset, best_nodes); ExtractPathAsUnicharIds(second_nodes, &unichar_ids, &certs, &ratings, &xcoords); tprintf("\nSecond choice path:\n"); DebugUnicharPath(unicharset, second_nodes, unichar_ids, certs, ratings, xcoords); } int timestepEnd= 0; //if lstm choice mode is required in granularity level 2 it stores the x //Coordinates of every chosen character to match the alternative choices to it if (lstm_choice_mode == 2) { ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings, &xcoords, &best_choices); if (best_choices.size() > 0) { timestepEnd = std::get<1>(best_choices.front()); best_choices.pop_front(); } } else { ExtractPathAsUnicharIds(best_nodes, &unichar_ids, &certs, &ratings, &xcoords); } int num_ids = unichar_ids.size(); if (debug) { DebugUnicharPath(unicharset, best_nodes, unichar_ids, certs, ratings, xcoords); } // Convert labels to unichar-ids. int word_end = 0; float prev_space_cert = 0.0f; for (int word_start = 0; word_start < num_ids; word_start = word_end) { for (word_end = word_start + 1; word_end < num_ids; ++word_end) { // A word is terminated when a space character or start_of_word flag is // hit. We also want to force a separate word for every non // space-delimited character when not in a dictionary context. if (unichar_ids[word_end] == UNICHAR_SPACE) break; int index = xcoords[word_end]; if (best_nodes[index]->start_of_word) break; if (best_nodes[index]->permuter == TOP_CHOICE_PERM && (!unicharset->IsSpaceDelimited(unichar_ids[word_end]) || !unicharset->IsSpaceDelimited(unichar_ids[word_end - 1]))) break; } float space_cert = 0.0f; if (word_end < num_ids && unichar_ids[word_end] == UNICHAR_SPACE) space_cert = certs[word_end]; bool leading_space = word_start > 0 && unichar_ids[word_start - 1] == UNICHAR_SPACE; // Create a WERD_RES for the output word. WERD_RES* word_res = InitializeWord( leading_space, line_box, word_start, word_end, std::min(space_cert, prev_space_cert), unicharset, xcoords, scale_factor); if (lstm_choice_mode == 1) { for (size_t i = timestepEnd; i < xcoords[word_end]; i++) { word_res->timesteps.push_back(timesteps[i]); } timestepEnd = xcoords[word_end]; } else if (lstm_choice_mode == 2){ // Accumulated Timesteps (choice mode 2 processing) float sum = 0; std::vector> choice_pairs; for (size_t i = timestepEnd; i < xcoords[word_end]; i++) { for (std::pair choice : timesteps[i]) { if (std::strcmp(choice.first, "")) { sum += choice.second; choice_pairs.push_back(choice); } } if ((best_choices.size() > 0 && i == std::get<1>(best_choices.front()) - 1) || i == xcoords[word_end]-1) { std::map summed_propabilities; for (auto & choice_pair : choice_pairs) { summed_propabilities[choice_pair.first] += choice_pair.second; } std::vector> accumulated_timestep; for (auto& summed_propability : summed_propabilities) { if(sum == 0) break; summed_propability.second/=sum; size_t pos = 0; while (accumulated_timestep.size() > pos && accumulated_timestep[pos].second > summed_propability.second) { pos++; } accumulated_timestep.insert(accumulated_timestep.begin() + pos, std::pair(summed_propability.first, summed_propability.second)); } if (best_choices.size() > 0) { best_choices.pop_front(); } choice_pairs.clear(); word_res->timesteps.push_back(accumulated_timestep); sum = 0; } } timestepEnd = xcoords[word_end]; } for (int i = word_start; i < word_end; ++i) { auto* choices = new BLOB_CHOICE_LIST; BLOB_CHOICE_IT bc_it(choices); auto* choice = new BLOB_CHOICE( unichar_ids[i], ratings[i], certs[i], -1, 1.0f, static_cast(INT16_MAX), 0.0f, BCC_STATIC_CLASSIFIER); int col = i - word_start; choice->set_matrix_cell(col, col); bc_it.add_after_then_move(choice); word_res->ratings->put(col, col, choices); } int index = xcoords[word_end - 1]; word_res->FakeWordFromRatings(best_nodes[index]->permuter); words->push_back(word_res); prev_space_cert = space_cert; if (word_end < num_ids && unichar_ids[word_end] == UNICHAR_SPACE) ++word_end; } } // Generates debug output of the content of the beams after a Decode. void RecodeBeamSearch::DebugBeams(const UNICHARSET& unicharset) const { for (int p = 0; p < beam_size_; ++p) { for (int d = 0; d < 2; ++d) { for (int c = 0; c < NC_COUNT; ++c) { auto cont = static_cast(c); int index = BeamIndex(d, cont, 0); if (beam_[p]->beams_[index].empty()) continue; // Print all the best scoring nodes for each unichar found. tprintf("Position %d: %s+%s beam\n", p, d ? "Dict" : "Non-Dict", kNodeContNames[c]); DebugBeamPos(unicharset, beam_[p]->beams_[index]); } } } } // Generates debug output of the content of a single beam position. void RecodeBeamSearch::DebugBeamPos(const UNICHARSET& unicharset, const RecodeHeap& heap) const { GenericVector unichar_bests; unichar_bests.init_to_size(unicharset.size(), nullptr); const RecodeNode* null_best = nullptr; int heap_size = heap.size(); for (int i = 0; i < heap_size; ++i) { const RecodeNode* node = &heap.get(i).data; if (node->unichar_id == INVALID_UNICHAR_ID) { if (null_best == nullptr || null_best->score < node->score) null_best = node; } else { if (unichar_bests[node->unichar_id] == nullptr || unichar_bests[node->unichar_id]->score < node->score) { unichar_bests[node->unichar_id] = node; } } } for (int u = 0; u < unichar_bests.size(); ++u) { if (unichar_bests[u] != nullptr) { const RecodeNode& node = *unichar_bests[u]; node.Print(null_char_, unicharset, 1); } } if (null_best != nullptr) { null_best->Print(null_char_, unicharset, 1); } } // Returns the given best_nodes as unichar-ids/certs/ratings/xcoords skipping // duplicates, nulls and intermediate parts. /* static */ void RecodeBeamSearch::ExtractPathAsUnicharIds( const GenericVector& best_nodes, GenericVector* unichar_ids, GenericVector* certs, GenericVector* ratings, GenericVector* xcoords, std::deque>* best_choices) { unichar_ids->truncate(0); certs->truncate(0); ratings->truncate(0); xcoords->truncate(0); // Backtrack extracting only valid, non-duplicate unichar-ids. int t = 0; int width = best_nodes.size(); while (t < width) { int id; int tposition; double certainty = 0.0; double rating = 0.0; while (t < width && best_nodes[t]->unichar_id == INVALID_UNICHAR_ID) { double cert = best_nodes[t++]->certainty; if (cert < certainty) certainty = cert; rating -= cert; } if (t < width) { int unichar_id = best_nodes[t]->unichar_id; if (unichar_id == UNICHAR_SPACE && !certs->empty() && best_nodes[t]->permuter != NO_PERM) { // All the rating and certainty go on the previous character except // for the space itself. if (certainty < certs->back()) certs->back() = certainty; ratings->back() += rating; certainty = 0.0; rating = 0.0; } unichar_ids->push_back(unichar_id); xcoords->push_back(t); if (best_choices != nullptr) { tposition = t; id = unichar_id; } do { double cert = best_nodes[t++]->certainty; // Special-case NO-PERM space to forget the certainty of the previous // nulls. See long comment in ContinueContext. if (cert < certainty || (unichar_id == UNICHAR_SPACE && best_nodes[t - 1]->permuter == NO_PERM)) { certainty = cert; } rating -= cert; } while (t < width && best_nodes[t]->duplicate); certs->push_back(certainty); ratings->push_back(rating); } else if (!certs->empty()) { if (certainty < certs->back()) certs->back() = certainty; ratings->back() += rating; } if (best_choices != nullptr) { best_choices->push_back( std::tuple(id, tposition)); } } xcoords->push_back(width); } // Sets up a word with the ratings matrix and fake blobs with boxes in the // right places. WERD_RES* RecodeBeamSearch::InitializeWord(bool leading_space, const TBOX& line_box, int word_start, int word_end, float space_certainty, const UNICHARSET* unicharset, const GenericVector& xcoords, float scale_factor) { // Make a fake blob for each non-zero label. C_BLOB_LIST blobs; C_BLOB_IT b_it(&blobs); for (int i = word_start; i < word_end; ++i) { int min_half_width = xcoords[i + 1] - xcoords[i]; if (i > 0 && xcoords[i] - xcoords[i - 1] < min_half_width) min_half_width = xcoords[i] - xcoords[i - 1]; if (min_half_width < 1) min_half_width = 1; // Make a fake blob. TBOX box(xcoords[i] - min_half_width, 0, xcoords[i] + min_half_width, line_box.height()); box.scale(scale_factor); box.move(ICOORD(line_box.left(), line_box.bottom())); box.set_top(line_box.top()); b_it.add_after_then_move(C_BLOB::FakeBlob(box)); } // Make a fake word from the blobs. WERD* word = new WERD(&blobs, leading_space, nullptr); // Make a WERD_RES from the word. auto* word_res = new WERD_RES(word); word_res->uch_set = unicharset; word_res->combination = true; // Give it ownership of the word. word_res->space_certainty = space_certainty; word_res->ratings = new MATRIX(word_end - word_start, 1); return word_res; } // Fills top_n_flags_ with bools that are true iff the corresponding output // is one of the top_n. void RecodeBeamSearch::ComputeTopN(const float* outputs, int num_outputs, int top_n) { top_n_flags_.init_to_size(num_outputs, TN_ALSO_RAN); top_code_ = -1; second_code_ = -1; top_heap_.clear(); for (int i = 0; i < num_outputs; ++i) { if (top_heap_.size() < top_n || outputs[i] > top_heap_.PeekTop().key) { TopPair entry(outputs[i], i); top_heap_.Push(&entry); if (top_heap_.size() > top_n) top_heap_.Pop(&entry); } } while (!top_heap_.empty()) { TopPair entry; top_heap_.Pop(&entry); if (top_heap_.size() > 1) { top_n_flags_[entry.data] = TN_TOPN; } else { top_n_flags_[entry.data] = TN_TOP2; if (top_heap_.empty()) top_code_ = entry.data; else second_code_ = entry.data; } } top_n_flags_[null_char_] = TN_TOP2; } // Adds the computation for the current time-step to the beam. Call at each // time-step in sequence from left to right. outputs is the activation vector // for the current timestep. void RecodeBeamSearch::DecodeStep(const float* outputs, int t, double dict_ratio, double cert_offset, double worst_dict_cert, const UNICHARSET* charset, bool debug) { if (t == beam_.size()) beam_.push_back(new RecodeBeam); RecodeBeam* step = beam_[t]; beam_size_ = t + 1; step->Clear(); if (t == 0) { // The first step can only use singles and initials. ContinueContext(nullptr, BeamIndex(false, NC_ANYTHING, 0), outputs, TN_TOP2, charset, dict_ratio, cert_offset, worst_dict_cert, step); if (dict_ != nullptr) { ContinueContext(nullptr, BeamIndex(true, NC_ANYTHING, 0), outputs, TN_TOP2, charset, dict_ratio, cert_offset, worst_dict_cert, step); } } else { RecodeBeam* prev = beam_[t - 1]; if (debug) { int beam_index = BeamIndex(true, NC_ANYTHING, 0); for (int i = prev->beams_[beam_index].size() - 1; i >= 0; --i) { GenericVector path; ExtractPath(&prev->beams_[beam_index].get(i).data, &path); tprintf("Step %d: Dawg beam %d:\n", t, i); DebugPath(charset, path); } beam_index = BeamIndex(false, NC_ANYTHING, 0); for (int i = prev->beams_[beam_index].size() - 1; i >= 0; --i) { GenericVector path; ExtractPath(&prev->beams_[beam_index].get(i).data, &path); tprintf("Step %d: Non-Dawg beam %d:\n", t, i); DebugPath(charset, path); } } int total_beam = 0; // Work through the scores by group (top-2, top-n, the rest) while the beam // is empty. This enables extending the context using only the top-n results // first, which may have an empty intersection with the valid codes, so we // fall back to the rest if the beam is empty. for (int tn = 0; tn < TN_COUNT && total_beam == 0; ++tn) { auto top_n = static_cast(tn); for (int index = 0; index < kNumBeams; ++index) { // Working backwards through the heaps doesn't guarantee that we see the // best first, but it comes before a lot of the worst, so it is slightly // more efficient than going forwards. for (int i = prev->beams_[index].size() - 1; i >= 0; --i) { ContinueContext(&prev->beams_[index].get(i).data, index, outputs, top_n, charset, dict_ratio, cert_offset, worst_dict_cert, step); } } for (int index = 0; index < kNumBeams; ++index) { if (ContinuationFromBeamsIndex(index) == NC_ANYTHING) total_beam += step->beams_[index].size(); } } // Special case for the best initial dawg. Push it on the heap if good // enough, but there is only one, so it doesn't blow up the beam. for (int c = 0; c < NC_COUNT; ++c) { if (step->best_initial_dawgs_[c].code >= 0) { int index = BeamIndex(true, static_cast(c), 0); RecodeHeap* dawg_heap = &step->beams_[index]; PushHeapIfBetter(kBeamWidths[0], &step->best_initial_dawgs_[c], dawg_heap); } } } } // Adds to the appropriate beams the legal (according to recoder) // continuations of context prev, which is of the given length, using the // given network outputs to provide scores to the choices. Uses only those // choices for which top_n_flags[index] == top_n_flag. void RecodeBeamSearch::ContinueContext(const RecodeNode* prev, int index, const float* outputs, TopNState top_n_flag, const UNICHARSET* charset, double dict_ratio, double cert_offset, double worst_dict_cert, RecodeBeam* step) { RecodedCharID prefix; RecodedCharID full_code; const RecodeNode* previous = prev; int length = LengthFromBeamsIndex(index); bool use_dawgs = IsDawgFromBeamsIndex(index); NodeContinuation prev_cont = ContinuationFromBeamsIndex(index); for (int p = length - 1; p >= 0; --p, previous = previous->prev) { while (previous != nullptr && (previous->duplicate || previous->code == null_char_)) { previous = previous->prev; } if (previous != nullptr) { prefix.Set(p, previous->code); full_code.Set(p, previous->code); } } if (prev != nullptr && !is_simple_text_) { if (top_n_flags_[prev->code] == top_n_flag) { if (prev_cont != NC_NO_DUP) { float cert = NetworkIO::ProbToCertainty(outputs[prev->code]) + cert_offset; PushDupOrNoDawgIfBetter(length, true, prev->code, prev->unichar_id, cert, worst_dict_cert, dict_ratio, use_dawgs, NC_ANYTHING, prev, step); } if (prev_cont == NC_ANYTHING && top_n_flag == TN_TOP2 && prev->code != null_char_) { float cert = NetworkIO::ProbToCertainty(outputs[prev->code] + outputs[null_char_]) + cert_offset; PushDupOrNoDawgIfBetter(length, true, prev->code, prev->unichar_id, cert, worst_dict_cert, dict_ratio, use_dawgs, NC_NO_DUP, prev, step); } } if (prev_cont == NC_ONLY_DUP) return; if (prev->code != null_char_ && length > 0 && top_n_flags_[null_char_] == top_n_flag) { // Allow nulls within multi code sequences, as the nulls within are not // explicitly included in the code sequence. float cert = NetworkIO::ProbToCertainty(outputs[null_char_]) + cert_offset; PushDupOrNoDawgIfBetter(length, false, null_char_, INVALID_UNICHAR_ID, cert, worst_dict_cert, dict_ratio, use_dawgs, NC_ANYTHING, prev, step); } } const GenericVector* final_codes = recoder_.GetFinalCodes(prefix); if (final_codes != nullptr) { for (int i = 0; i < final_codes->size(); ++i) { int code = (*final_codes)[i]; if (top_n_flags_[code] != top_n_flag) continue; if (prev != nullptr && prev->code == code && !is_simple_text_) continue; float cert = NetworkIO::ProbToCertainty(outputs[code]) + cert_offset; if (cert < kMinCertainty && code != null_char_) continue; full_code.Set(length, code); int unichar_id = recoder_.DecodeUnichar(full_code); // Map the null char to INVALID. if (length == 0 && code == null_char_) unichar_id = INVALID_UNICHAR_ID; if (unichar_id != INVALID_UNICHAR_ID && charset != nullptr && !charset->get_enabled(unichar_id)) continue; // disabled by whitelist/blacklist ContinueUnichar(code, unichar_id, cert, worst_dict_cert, dict_ratio, use_dawgs, NC_ANYTHING, prev, step); if (top_n_flag == TN_TOP2 && code != null_char_) { float prob = outputs[code] + outputs[null_char_]; if (prev != nullptr && prev_cont == NC_ANYTHING && prev->code != null_char_ && ((prev->code == top_code_ && code == second_code_) || (code == top_code_ && prev->code == second_code_))) { prob += outputs[prev->code]; } float cert = NetworkIO::ProbToCertainty(prob) + cert_offset; ContinueUnichar(code, unichar_id, cert, worst_dict_cert, dict_ratio, use_dawgs, NC_ONLY_DUP, prev, step); } } } const GenericVector* next_codes = recoder_.GetNextCodes(prefix); if (next_codes != nullptr) { for (int i = 0; i < next_codes->size(); ++i) { int code = (*next_codes)[i]; if (top_n_flags_[code] != top_n_flag) continue; if (prev != nullptr && prev->code == code && !is_simple_text_) continue; float cert = NetworkIO::ProbToCertainty(outputs[code]) + cert_offset; PushDupOrNoDawgIfBetter(length + 1, false, code, INVALID_UNICHAR_ID, cert, worst_dict_cert, dict_ratio, use_dawgs, NC_ANYTHING, prev, step); if (top_n_flag == TN_TOP2 && code != null_char_) { float prob = outputs[code] + outputs[null_char_]; if (prev != nullptr && prev_cont == NC_ANYTHING && prev->code != null_char_ && ((prev->code == top_code_ && code == second_code_) || (code == top_code_ && prev->code == second_code_))) { prob += outputs[prev->code]; } float cert = NetworkIO::ProbToCertainty(prob) + cert_offset; PushDupOrNoDawgIfBetter(length + 1, false, code, INVALID_UNICHAR_ID, cert, worst_dict_cert, dict_ratio, use_dawgs, NC_ONLY_DUP, prev, step); } } } } // Continues for a new unichar, using dawg or non-dawg as per flag. void RecodeBeamSearch::ContinueUnichar(int code, int unichar_id, float cert, float worst_dict_cert, float dict_ratio, bool use_dawgs, NodeContinuation cont, const RecodeNode* prev, RecodeBeam* step) { if (use_dawgs) { if (cert > worst_dict_cert) { ContinueDawg(code, unichar_id, cert, cont, prev, step); } } else { RecodeHeap* nodawg_heap = &step->beams_[BeamIndex(false, cont, 0)]; PushHeapIfBetter(kBeamWidths[0], code, unichar_id, TOP_CHOICE_PERM, false, false, false, false, cert * dict_ratio, prev, nullptr, nodawg_heap); if (dict_ != nullptr && ((unichar_id == UNICHAR_SPACE && cert > worst_dict_cert) || !dict_->getUnicharset().IsSpaceDelimited(unichar_id))) { // Any top choice position that can start a new word, ie a space or // any non-space-delimited character, should also be considered // by the dawg search, so push initial dawg to the dawg heap. float dawg_cert = cert; PermuterType permuter = TOP_CHOICE_PERM; // Since we use the space either side of a dictionary word in the // certainty of the word, (to properly handle weak spaces) and the // space is coming from a non-dict word, we need special conditions // to avoid degrading the certainty of the dict word that follows. // With a space we don't multiply the certainty by dict_ratio, and we // flag the space with NO_PERM to indicate that we should not use the // predecessor nulls to generate the confidence for the space, as they // have already been multiplied by dict_ratio, and we can't go back to // insert more entries in any previous heaps. if (unichar_id == UNICHAR_SPACE) permuter = NO_PERM; else dawg_cert *= dict_ratio; PushInitialDawgIfBetter(code, unichar_id, permuter, false, false, dawg_cert, cont, prev, step); } } } // Adds a RecodeNode composed of the tuple (code, unichar_id, cert, prev, // appropriate-dawg-args, cert) to the given heap (dawg_beam_) if unichar_id // is a valid continuation of whatever is in prev. void RecodeBeamSearch::ContinueDawg(int code, int unichar_id, float cert, NodeContinuation cont, const RecodeNode* prev, RecodeBeam* step) { RecodeHeap* dawg_heap = &step->beams_[BeamIndex(true, cont, 0)]; RecodeHeap* nodawg_heap = &step->beams_[BeamIndex(false, cont, 0)]; if (unichar_id == INVALID_UNICHAR_ID) { PushHeapIfBetter(kBeamWidths[0], code, unichar_id, NO_PERM, false, false, false, false, cert, prev, nullptr, dawg_heap); return; } // Avoid dictionary probe if score a total loss. float score = cert; if (prev != nullptr) score += prev->score; if (dawg_heap->size() >= kBeamWidths[0] && score <= dawg_heap->PeekTop().data.score && nodawg_heap->size() >= kBeamWidths[0] && score <= nodawg_heap->PeekTop().data.score) { return; } const RecodeNode* uni_prev = prev; // Prev may be a partial code, null_char, or duplicate, so scan back to the // last valid unichar_id. while (uni_prev != nullptr && (uni_prev->unichar_id == INVALID_UNICHAR_ID || uni_prev->duplicate)) uni_prev = uni_prev->prev; if (unichar_id == UNICHAR_SPACE) { if (uni_prev != nullptr && uni_prev->end_of_word) { // Space is good. Push initial state, to the dawg beam and a regular // space to the top choice beam. PushInitialDawgIfBetter(code, unichar_id, uni_prev->permuter, false, false, cert, cont, prev, step); PushHeapIfBetter(kBeamWidths[0], code, unichar_id, uni_prev->permuter, false, false, false, false, cert, prev, nullptr, nodawg_heap); } return; } else if (uni_prev != nullptr && uni_prev->start_of_dawg && uni_prev->unichar_id != UNICHAR_SPACE && dict_->getUnicharset().IsSpaceDelimited(uni_prev->unichar_id) && dict_->getUnicharset().IsSpaceDelimited(unichar_id)) { return; // Can't break words between space delimited chars. } DawgPositionVector initial_dawgs; auto* updated_dawgs = new DawgPositionVector; DawgArgs dawg_args(&initial_dawgs, updated_dawgs, NO_PERM); bool word_start = false; if (uni_prev == nullptr) { // Starting from beginning of line. dict_->default_dawgs(&initial_dawgs, false); word_start = true; } else if (uni_prev->dawgs != nullptr) { // Continuing a previous dict word. dawg_args.active_dawgs = uni_prev->dawgs; word_start = uni_prev->start_of_dawg; } else { return; // Can't continue if not a dict word. } auto permuter = static_cast( dict_->def_letter_is_okay(&dawg_args, dict_->getUnicharset(), unichar_id, false)); if (permuter != NO_PERM) { PushHeapIfBetter(kBeamWidths[0], code, unichar_id, permuter, false, word_start, dawg_args.valid_end, false, cert, prev, dawg_args.updated_dawgs, dawg_heap); if (dawg_args.valid_end && !space_delimited_) { // We can start another word right away, so push initial state as well, // to the dawg beam, and the regular character to the top choice beam, // since non-dict words can start here too. PushInitialDawgIfBetter(code, unichar_id, permuter, word_start, true, cert, cont, prev, step); PushHeapIfBetter(kBeamWidths[0], code, unichar_id, permuter, false, word_start, true, false, cert, prev, nullptr, nodawg_heap); } } else { delete updated_dawgs; } } // Adds a RecodeNode composed of the tuple (code, unichar_id, // initial-dawg-state, prev, cert) to the given heap if/ there is room or if // better than the current worst element if already full. void RecodeBeamSearch::PushInitialDawgIfBetter(int code, int unichar_id, PermuterType permuter, bool start, bool end, float cert, NodeContinuation cont, const RecodeNode* prev, RecodeBeam* step) { RecodeNode* best_initial_dawg = &step->best_initial_dawgs_[cont]; float score = cert; if (prev != nullptr) score += prev->score; if (best_initial_dawg->code < 0 || score > best_initial_dawg->score) { auto* initial_dawgs = new DawgPositionVector; dict_->default_dawgs(initial_dawgs, false); RecodeNode node(code, unichar_id, permuter, true, start, end, false, cert, score, prev, initial_dawgs, ComputeCodeHash(code, false, prev)); *best_initial_dawg = node; } } // Adds a RecodeNode composed of the tuple (code, unichar_id, permuter, // false, false, false, false, cert, prev, nullptr) to heap if there is room // or if better than the current worst element if already full. /* static */ void RecodeBeamSearch::PushDupOrNoDawgIfBetter( int length, bool dup, int code, int unichar_id, float cert, float worst_dict_cert, float dict_ratio, bool use_dawgs, NodeContinuation cont, const RecodeNode* prev, RecodeBeam* step) { int index = BeamIndex(use_dawgs, cont, length); if (use_dawgs) { if (cert > worst_dict_cert) { PushHeapIfBetter(kBeamWidths[length], code, unichar_id, prev ? prev->permuter : NO_PERM, false, false, false, dup, cert, prev, nullptr, &step->beams_[index]); } } else { cert *= dict_ratio; if (cert >= kMinCertainty || code == null_char_) { PushHeapIfBetter(kBeamWidths[length], code, unichar_id, prev ? prev->permuter : TOP_CHOICE_PERM, false, false, false, dup, cert, prev, nullptr, &step->beams_[index]); } } } // Adds a RecodeNode composed of the tuple (code, unichar_id, permuter, // dawg_start, word_start, end, dup, cert, prev, d) to heap if there is room // or if better than the current worst element if already full. void RecodeBeamSearch::PushHeapIfBetter(int max_size, int code, int unichar_id, PermuterType permuter, bool dawg_start, bool word_start, bool end, bool dup, float cert, const RecodeNode* prev, DawgPositionVector* d, RecodeHeap* heap) { float score = cert; if (prev != nullptr) score += prev->score; if (heap->size() < max_size || score > heap->PeekTop().data.score) { uint64_t hash = ComputeCodeHash(code, dup, prev); RecodeNode node(code, unichar_id, permuter, dawg_start, word_start, end, dup, cert, score, prev, d, hash); if (UpdateHeapIfMatched(&node, heap)) return; RecodePair entry(score, node); heap->Push(&entry); ASSERT_HOST(entry.data.dawgs == nullptr); if (heap->size() > max_size) heap->Pop(&entry); } else { delete d; } } // Adds a RecodeNode to heap if there is room // or if better than the current worst element if already full. void RecodeBeamSearch::PushHeapIfBetter(int max_size, RecodeNode* node, RecodeHeap* heap) { if (heap->size() < max_size || node->score > heap->PeekTop().data.score) { if (UpdateHeapIfMatched(node, heap)) { return; } RecodePair entry(node->score, *node); heap->Push(&entry); ASSERT_HOST(entry.data.dawgs == nullptr); if (heap->size() > max_size) heap->Pop(&entry); } } // Searches the heap for a matching entry, and updates the score with // reshuffle if needed. Returns true if there was a match. bool RecodeBeamSearch::UpdateHeapIfMatched(RecodeNode* new_node, RecodeHeap* heap) { // TODO(rays) consider hash map instead of linear search. // It might not be faster because the hash map would have to be updated // every time a heap reshuffle happens, and that would be a lot of overhead. GenericVector* nodes = heap->heap(); for (int i = 0; i < nodes->size(); ++i) { RecodeNode& node = (*nodes)[i].data; if (node.code == new_node->code && node.code_hash == new_node->code_hash && node.permuter == new_node->permuter && node.start_of_dawg == new_node->start_of_dawg) { if (new_node->score > node.score) { // The new one is better. Update the entire node in the heap and // reshuffle. node = *new_node; (*nodes)[i].key = node.score; heap->Reshuffle(&(*nodes)[i]); } return true; } } return false; } // Computes and returns the code-hash for the given code and prev. uint64_t RecodeBeamSearch::ComputeCodeHash(int code, bool dup, const RecodeNode* prev) const { uint64_t hash = prev == nullptr ? 0 : prev->code_hash; if (!dup && code != null_char_) { int num_classes = recoder_.code_range(); uint64_t carry = (((hash >> 32) * num_classes) >> 32); hash *= num_classes; hash += carry; hash += code; } return hash; } // Backtracks to extract the best path through the lattice that was built // during Decode. On return the best_nodes vector essentially contains the set // of code, score pairs that make the optimal path with the constraint that // the recoder can decode the code sequence back to a sequence of unichar-ids. void RecodeBeamSearch::ExtractBestPaths( GenericVector* best_nodes, GenericVector* second_nodes) const { // Scan both beams to extract the best and second best paths. const RecodeNode* best_node = nullptr; const RecodeNode* second_best_node = nullptr; const RecodeBeam* last_beam = beam_[beam_size_ - 1]; for (int c = 0; c < NC_COUNT; ++c) { if (c == NC_ONLY_DUP) continue; auto cont = static_cast(c); for (int is_dawg = 0; is_dawg < 2; ++is_dawg) { int beam_index = BeamIndex(is_dawg, cont, 0); int heap_size = last_beam->beams_[beam_index].size(); for (int h = 0; h < heap_size; ++h) { const RecodeNode* node = &last_beam->beams_[beam_index].get(h).data; if (is_dawg) { // dawg_node may be a null_char, or duplicate, so scan back to the // last valid unichar_id. const RecodeNode* dawg_node = node; while (dawg_node != nullptr && (dawg_node->unichar_id == INVALID_UNICHAR_ID || dawg_node->duplicate)) dawg_node = dawg_node->prev; if (dawg_node == nullptr || (!dawg_node->end_of_word && dawg_node->unichar_id != UNICHAR_SPACE)) { // Dawg node is not valid. continue; } } if (best_node == nullptr || node->score > best_node->score) { second_best_node = best_node; best_node = node; } else if (second_best_node == nullptr || node->score > second_best_node->score) { second_best_node = node; } } } } if (second_nodes != nullptr) ExtractPath(second_best_node, second_nodes); ExtractPath(best_node, best_nodes); } // Helper backtracks through the lattice from the given node, storing the // path and reversing it. void RecodeBeamSearch::ExtractPath( const RecodeNode* node, GenericVector* path) const { path->truncate(0); while (node != nullptr) { path->push_back(node); node = node->prev; } path->reverse(); } // Helper prints debug information on the given lattice path. void RecodeBeamSearch::DebugPath( const UNICHARSET* unicharset, const GenericVector& path) const { for (int c = 0; c < path.size(); ++c) { const RecodeNode& node = *path[c]; tprintf("%d ", c); node.Print(null_char_, *unicharset, 1); } } // Helper prints debug information on the given unichar path. void RecodeBeamSearch::DebugUnicharPath( const UNICHARSET* unicharset, const GenericVector& path, const GenericVector& unichar_ids, const GenericVector& certs, const GenericVector& ratings, const GenericVector& xcoords) const { int num_ids = unichar_ids.size(); double total_rating = 0.0; for (int c = 0; c < num_ids; ++c) { int coord = xcoords[c]; tprintf("%d %d=%s r=%g, c=%g, s=%d, e=%d, perm=%d\n", coord, unichar_ids[c], unicharset->debug_str(unichar_ids[c]).string(), ratings[c], certs[c], path[coord]->start_of_word, path[coord]->end_of_word, path[coord]->permuter); total_rating += ratings[c]; } tprintf("Path total rating = %g\n", total_rating); } } // namespace tesseract.