/////////////////////////////////////////////////////////////////////// // File: classify.h // Description: classify class. // Author: Samuel Charron // // (C) Copyright 2006, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_CLASSIFY_CLASSIFY_H_ #define TESSERACT_CLASSIFY_CLASSIFY_H_ // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H #include "config_auto.h" #endif #ifdef DISABLED_LEGACY_ENGINE #include "ccstruct.h" #include "dict.h" namespace tesseract { class Classify : public CCStruct { public: Classify(); virtual ~Classify(); virtual Dict& getDict() { return dict_; } // Member variables. INT_VAR_H(classify_debug_level, 0, "Classify debug level"); BOOL_VAR_H(classify_bln_numeric_mode, 0, "Assume the input is numbers [0-9]."); double_VAR_H(classify_max_rating_ratio, 1.5, "Veto ratio between classifier ratings"); double_VAR_H(classify_max_certainty_margin, 5.5, "Veto difference between classifier certainties"); private: Dict dict_; }; } // namespace tesseract #else // DISABLED_LEGACY_ENGINE not defined #include "adaptive.h" #include "ccstruct.h" #include "dict.h" #include "featdefs.h" #include "fontinfo.h" #include "imagedata.h" #include "intfx.h" #include "intmatcher.h" #include "normalis.h" #include "ratngs.h" #include "ocrfeatures.h" #include "unicity_table.h" class ScrollView; class WERD_CHOICE; class WERD_RES; struct ADAPT_RESULTS; struct NORM_PROTOS; static const int kUnknownFontinfoId = -1; static const int kBlankFontinfoId = -2; namespace tesseract { class ShapeClassifier; struct ShapeRating; class ShapeTable; struct UnicharRating; // How segmented is a blob. In this enum, character refers to a classifiable // unit, but that is too long and character is usually easier to understand. enum CharSegmentationType { CST_FRAGMENT, // A partial character. CST_WHOLE, // A correctly segmented character. CST_IMPROPER, // More than one but less than 2 characters. CST_NGRAM // Multiple characters. }; class Classify : public CCStruct { public: Classify(); ~Classify() override; virtual Dict& getDict() { return dict_; } const ShapeTable* shape_table() const { return shape_table_; } // Takes ownership of the given classifier, and uses it for future calls // to CharNormClassifier. void SetStaticClassifier(ShapeClassifier* static_classifier); // Adds a noise classification result that is a bit worse than the worst // current result, or the worst possible result if no current results. void AddLargeSpeckleTo(int blob_length, BLOB_CHOICE_LIST *choices); // Returns true if the blob is small enough to be a large speckle. bool LargeSpeckle(const TBLOB &blob); /* adaptive.cpp ************************************************************/ ADAPT_TEMPLATES NewAdaptedTemplates(bool InitFromUnicharset); int GetFontinfoId(ADAPT_CLASS Class, uint8_t ConfigId); // Runs the class pruner from int_templates on the given features, returning // the number of classes output in results. // int_templates Class pruner tables // num_features Number of features in blob // features Array of features // normalization_factors (input) Array of int_templates->NumClasses fudge // factors from blob normalization process. // (Indexed by CLASS_INDEX) // expected_num_features (input) Array of int_templates->NumClasses // expected number of features for each class. // (Indexed by CLASS_INDEX) // results (output) Sorted Array of pruned classes. // Array must be sized to take the maximum possible // number of outputs : int_templates->NumClasses. int PruneClasses(const INT_TEMPLATES_STRUCT* int_templates, int num_features, int keep_this, const INT_FEATURE_STRUCT* features, const uint8_t* normalization_factors, const uint16_t* expected_num_features, GenericVector* results); void ReadNewCutoffs(TFile* fp, CLASS_CUTOFF_ARRAY Cutoffs); void PrintAdaptedTemplates(FILE *File, ADAPT_TEMPLATES Templates); void WriteAdaptedTemplates(FILE *File, ADAPT_TEMPLATES Templates); ADAPT_TEMPLATES ReadAdaptedTemplates(TFile* File); /* normmatch.cpp ************************************************************/ float ComputeNormMatch(CLASS_ID ClassId, const FEATURE_STRUCT& feature, bool DebugMatch); void FreeNormProtos(); NORM_PROTOS* ReadNormProtos(TFile* fp); /* protos.cpp ***************************************************************/ void ConvertProto(PROTO Proto, int ProtoId, INT_CLASS Class); INT_TEMPLATES CreateIntTemplates(CLASSES FloatProtos, const UNICHARSET& target_unicharset); /* adaptmatch.cpp ***********************************************************/ // Learns the given word using its chopped_word, seam_array, denorm, // box_word, best_state, and correct_text to learn both correctly and // incorrectly segmented blobs. If fontname is not nullptr, then LearnBlob // is called and the data will be saved in an internal buffer. // Otherwise AdaptToBlob is called for adaption within a document. void LearnWord(const char* fontname, WERD_RES* word); // Builds a blob of length fragments, from the word, starting at start, // and then learns it, as having the given correct_text. // If fontname is not nullptr, then LearnBlob is called and the data will be // saved in an internal buffer for static training. // Otherwise AdaptToBlob is called for adaption within a document. // threshold is a magic number required by AdaptToChar and generated by // ComputeAdaptionThresholds. // Although it can be partly inferred from the string, segmentation is // provided to explicitly clarify the character segmentation. void LearnPieces(const char* fontname, int start, int length, float threshold, CharSegmentationType segmentation, const char* correct_text, WERD_RES* word); void InitAdaptiveClassifier(TessdataManager* mgr); void InitAdaptedClass(TBLOB *Blob, CLASS_ID ClassId, int FontinfoId, ADAPT_CLASS Class, ADAPT_TEMPLATES Templates); void AmbigClassifier(const GenericVector& int_features, const INT_FX_RESULT_STRUCT& fx_info, const TBLOB *blob, INT_TEMPLATES templates, ADAPT_CLASS *classes, UNICHAR_ID *ambiguities, ADAPT_RESULTS *results); void MasterMatcher(INT_TEMPLATES templates, int16_t num_features, const INT_FEATURE_STRUCT* features, const uint8_t* norm_factors, ADAPT_CLASS* classes, int debug, int matcher_multiplier, const TBOX& blob_box, const GenericVector& results, ADAPT_RESULTS* final_results); // Converts configs to fonts, and if the result is not adapted, and a // shape_table_ is present, the shape is expanded to include all // unichar_ids represented, before applying a set of corrections to the // distance rating in int_result, (see ComputeCorrectedRating.) // The results are added to the final_results output. void ExpandShapesAndApplyCorrections(ADAPT_CLASS* classes, bool debug, int class_id, int bottom, int top, float cp_rating, int blob_length, int matcher_multiplier, const uint8_t* cn_factors, UnicharRating* int_result, ADAPT_RESULTS* final_results); // Applies a set of corrections to the distance im_rating, // including the cn_correction, miss penalty and additional penalty // for non-alnums being vertical misfits. Returns the corrected distance. double ComputeCorrectedRating(bool debug, int unichar_id, double cp_rating, double im_rating, int feature_misses, int bottom, int top, int blob_length, int matcher_multiplier, const uint8_t* cn_factors); void ConvertMatchesToChoices(const DENORM& denorm, const TBOX& box, ADAPT_RESULTS *Results, BLOB_CHOICE_LIST *Choices); void AddNewResult(const UnicharRating& new_result, ADAPT_RESULTS *results); int GetAdaptiveFeatures(TBLOB *Blob, INT_FEATURE_ARRAY IntFeatures, FEATURE_SET *FloatFeatures); #ifndef GRAPHICS_DISABLED void DebugAdaptiveClassifier(TBLOB *Blob, ADAPT_RESULTS *Results); #endif PROTO_ID MakeNewTempProtos(FEATURE_SET Features, int NumBadFeat, FEATURE_ID BadFeat[], INT_CLASS IClass, ADAPT_CLASS Class, BIT_VECTOR TempProtoMask); int MakeNewTemporaryConfig(ADAPT_TEMPLATES Templates, CLASS_ID ClassId, int FontinfoId, int NumFeatures, INT_FEATURE_ARRAY Features, FEATURE_SET FloatFeatures); void MakePermanent(ADAPT_TEMPLATES Templates, CLASS_ID ClassId, int ConfigId, TBLOB *Blob); void PrintAdaptiveMatchResults(const ADAPT_RESULTS& results); void RemoveExtraPuncs(ADAPT_RESULTS *Results); void RemoveBadMatches(ADAPT_RESULTS *Results); void SetAdaptiveThreshold(float Threshold); void ShowBestMatchFor(int shape_id, const INT_FEATURE_STRUCT* features, int num_features); // Returns a string for the classifier class_id: either the corresponding // unicharset debug_str or the shape_table_ debug str. STRING ClassIDToDebugStr(const INT_TEMPLATES_STRUCT* templates, int class_id, int config_id) const; // Converts a classifier class_id index with a config ID to: // shape_table_ present: a shape_table_ index OR // No shape_table_: a font ID. // Without shape training, each class_id, config pair represents a single // unichar id/font combination, so this function looks up the corresponding // font id. // With shape training, each class_id, config pair represents a single // shape table index, so the fontset_table stores the shape table index, // and the shape_table_ must be consulted to obtain the actual unichar_id/ // font combinations that the shape represents. int ClassAndConfigIDToFontOrShapeID(int class_id, int int_result_config) const; // Converts a shape_table_ index to a classifier class_id index (not a // unichar-id!). Uses a search, so not fast. int ShapeIDToClassID(int shape_id) const; UNICHAR_ID *BaselineClassifier( TBLOB *Blob, const GenericVector& int_features, const INT_FX_RESULT_STRUCT& fx_info, ADAPT_TEMPLATES Templates, ADAPT_RESULTS *Results); int CharNormClassifier(TBLOB *blob, const TrainingSample& sample, ADAPT_RESULTS *adapt_results); // As CharNormClassifier, but operates on a TrainingSample and outputs to // a GenericVector of ShapeRating without conversion to classes. int CharNormTrainingSample(bool pruner_only, int keep_this, const TrainingSample& sample, GenericVector* results); UNICHAR_ID *GetAmbiguities(TBLOB *Blob, CLASS_ID CorrectClass); void DoAdaptiveMatch(TBLOB *Blob, ADAPT_RESULTS *Results); void AdaptToChar(TBLOB* Blob, CLASS_ID ClassId, int FontinfoId, float Threshold, ADAPT_TEMPLATES adaptive_templates); void DisplayAdaptedChar(TBLOB* blob, INT_CLASS_STRUCT* int_class); bool AdaptableWord(WERD_RES* word); void EndAdaptiveClassifier(); void SettupPass1(); void SettupPass2(); void AdaptiveClassifier(TBLOB *Blob, BLOB_CHOICE_LIST *Choices); void ClassifyAsNoise(ADAPT_RESULTS *Results); void ResetAdaptiveClassifierInternal(); void SwitchAdaptiveClassifier(); void StartBackupAdaptiveClassifier(); int GetCharNormFeature(const INT_FX_RESULT_STRUCT& fx_info, INT_TEMPLATES templates, uint8_t* pruner_norm_array, uint8_t* char_norm_array); // Computes the char_norm_array for the unicharset and, if not nullptr, the // pruner_array as appropriate according to the existence of the shape_table. // The norm_feature is deleted as it is almost certainly no longer needed. void ComputeCharNormArrays(FEATURE_STRUCT* norm_feature, INT_TEMPLATES_STRUCT* templates, uint8_t* char_norm_array, uint8_t* pruner_array); bool TempConfigReliable(CLASS_ID class_id, const TEMP_CONFIG &config); void UpdateAmbigsGroup(CLASS_ID class_id, TBLOB *Blob); bool AdaptiveClassifierIsFull() const { return NumAdaptationsFailed > 0; } bool AdaptiveClassifierIsEmpty() const { return AdaptedTemplates->NumPermClasses == 0; } bool LooksLikeGarbage(TBLOB *blob); void RefreshDebugWindow(ScrollView **win, const char *msg, int y_offset, const TBOX &wbox); // intfx.cpp // Computes the DENORMS for bl(baseline) and cn(character) normalization // during feature extraction. The input denorm describes the current state // of the blob, which is usually a baseline-normalized word. // The Transforms setup are as follows: // Baseline Normalized (bl) Output: // We center the grapheme by aligning the x-coordinate of its centroid with // x=128 and leaving the already-baseline-normalized y as-is. // // Character Normalized (cn) Output: // We align the grapheme's centroid at the origin and scale it // asymmetrically in x and y so that the 2nd moments are a standard value // (51.2) ie the result is vaguely square. // If classify_nonlinear_norm is true: // A non-linear normalization is setup that attempts to evenly distribute // edges across x and y. // // Some of the fields of fx_info are also setup: // Length: Total length of outline. // Rx: Rounded y second moment. (Reversed by convention.) // Ry: rounded x second moment. // Xmean: Rounded x center of mass of the blob. // Ymean: Rounded y center of mass of the blob. static void SetupBLCNDenorms(const TBLOB& blob, bool nonlinear_norm, DENORM* bl_denorm, DENORM* cn_denorm, INT_FX_RESULT_STRUCT* fx_info); // Extracts sets of 3-D features of length kStandardFeatureLength (=12.8), as // (x,y) position and angle as measured counterclockwise from the vector // <-1, 0>, from blob using two normalizations defined by bl_denorm and // cn_denorm. See SetpuBLCNDenorms for definitions. // If outline_cn_counts is not nullptr, on return it contains the cumulative // number of cn features generated for each outline in the blob (in order). // Thus after the first outline, there were (*outline_cn_counts)[0] features, // after the second outline, there were (*outline_cn_counts)[1] features etc. static void ExtractFeatures(const TBLOB& blob, bool nonlinear_norm, GenericVector* bl_features, GenericVector* cn_features, INT_FX_RESULT_STRUCT* results, GenericVector* outline_cn_counts); /* float2int.cpp ************************************************************/ void ClearCharNormArray(uint8_t* char_norm_array); void ComputeIntCharNormArray(const FEATURE_STRUCT& norm_feature, uint8_t* char_norm_array); void ComputeIntFeatures(FEATURE_SET Features, INT_FEATURE_ARRAY IntFeatures); /* intproto.cpp *************************************************************/ INT_TEMPLATES ReadIntTemplates(TFile* fp); void WriteIntTemplates(FILE *File, INT_TEMPLATES Templates, const UNICHARSET& target_unicharset); CLASS_ID GetClassToDebug(const char *Prompt, bool* adaptive_on, bool* pretrained_on, int* shape_id); void ShowMatchDisplay(); /* font detection ***********************************************************/ UnicityTable& get_fontinfo_table() { return fontinfo_table_; } const UnicityTable& get_fontinfo_table() const { return fontinfo_table_; } UnicityTable& get_fontset_table() { return fontset_table_; } /* mfoutline.cpp ***********************************************************/ void NormalizeOutlines(LIST Outlines, float *XScale, float *YScale); /* outfeat.cpp ***********************************************************/ FEATURE_SET ExtractOutlineFeatures(TBLOB *Blob); /* picofeat.cpp ***********************************************************/ FEATURE_SET ExtractPicoFeatures(TBLOB *Blob); FEATURE_SET ExtractIntCNFeatures(const TBLOB& blob, const INT_FX_RESULT_STRUCT& fx_info); FEATURE_SET ExtractIntGeoFeatures(const TBLOB& blob, const INT_FX_RESULT_STRUCT& fx_info); /* blobclass.cpp ***********************************************************/ // Extracts features from the given blob and saves them in the tr_file_data_ // member variable. // fontname: Name of font that this blob was printed in. // cn_denorm: Character normalization transformation to apply to the blob. // fx_info: Character normalization parameters computed with cn_denorm. // blob_text: Ground truth text for the blob. void LearnBlob(const STRING& fontname, TBLOB* Blob, const DENORM& cn_denorm, const INT_FX_RESULT_STRUCT& fx_info, const char* blob_text); // Writes stored training data to a .tr file based on the given filename. // Returns false on error. bool WriteTRFile(const STRING& filename); // Member variables. // Parameters. // Set during training (in lang.config) to indicate whether the divisible // blobs chopper should be used (true for latin script.) BOOL_VAR_H(allow_blob_division, true, "Use divisible blobs chopping"); // Set during training (in lang.config) to indicate whether the divisible // blobs chopper should be used in preference to chopping. Set to true for // southern Indic scripts. BOOL_VAR_H(prioritize_division, FALSE, "Prioritize blob division over chopping"); INT_VAR_H(tessedit_single_match, FALSE, "Top choice only from CP"); BOOL_VAR_H(classify_enable_learning, true, "Enable adaptive classifier"); INT_VAR_H(classify_debug_level, 0, "Classify debug level"); /* mfoutline.cpp ***********************************************************/ /* control knobs used to control normalization of outlines */ INT_VAR_H(classify_norm_method, character, "Normalization Method ..."); double_VAR_H(classify_char_norm_range, 0.2, "Character Normalization Range ..."); double_VAR_H(classify_min_norm_scale_x, 0.0, "Min char x-norm scale ..."); double_VAR_H(classify_max_norm_scale_x, 0.325, "Max char x-norm scale ..."); double_VAR_H(classify_min_norm_scale_y, 0.0, "Min char y-norm scale ..."); double_VAR_H(classify_max_norm_scale_y, 0.325, "Max char y-norm scale ..."); double_VAR_H(classify_max_rating_ratio, 1.5, "Veto ratio between classifier ratings"); double_VAR_H(classify_max_certainty_margin, 5.5, "Veto difference between classifier certainties"); /* adaptmatch.cpp ***********************************************************/ BOOL_VAR_H(tess_cn_matching, 0, "Character Normalized Matching"); BOOL_VAR_H(tess_bn_matching, 0, "Baseline Normalized Matching"); BOOL_VAR_H(classify_enable_adaptive_matcher, 1, "Enable adaptive classifier"); BOOL_VAR_H(classify_use_pre_adapted_templates, 0, "Use pre-adapted classifier templates"); BOOL_VAR_H(classify_save_adapted_templates, 0, "Save adapted templates to a file"); BOOL_VAR_H(classify_enable_adaptive_debugger, 0, "Enable match debugger"); BOOL_VAR_H(classify_nonlinear_norm, 0, "Non-linear stroke-density normalization"); INT_VAR_H(matcher_debug_level, 0, "Matcher Debug Level"); INT_VAR_H(matcher_debug_flags, 0, "Matcher Debug Flags"); INT_VAR_H(classify_learning_debug_level, 0, "Learning Debug Level: "); double_VAR_H(matcher_good_threshold, 0.125, "Good Match (0-1)"); double_VAR_H(matcher_reliable_adaptive_result, 0.0, "Great Match (0-1)"); double_VAR_H(matcher_perfect_threshold, 0.02, "Perfect Match (0-1)"); double_VAR_H(matcher_bad_match_pad, 0.15, "Bad Match Pad (0-1)"); double_VAR_H(matcher_rating_margin, 0.1, "New template margin (0-1)"); double_VAR_H(matcher_avg_noise_size, 12.0, "Avg. noise blob length: "); INT_VAR_H(matcher_permanent_classes_min, 1, "Min # of permanent classes"); INT_VAR_H(matcher_min_examples_for_prototyping, 3, "Reliable Config Threshold"); INT_VAR_H(matcher_sufficient_examples_for_prototyping, 5, "Enable adaption even if the ambiguities have not been seen"); double_VAR_H(matcher_clustering_max_angle_delta, 0.015, "Maximum angle delta for prototype clustering"); double_VAR_H(classify_misfit_junk_penalty, 0.0, "Penalty to apply when a non-alnum is vertically out of " "its expected textline position"); double_VAR_H(rating_scale, 1.5, "Rating scaling factor"); double_VAR_H(certainty_scale, 20.0, "Certainty scaling factor"); double_VAR_H(tessedit_class_miss_scale, 0.00390625, "Scale factor for features not used"); double_VAR_H(classify_adapted_pruning_factor, 2.5, "Prune poor adapted results this much worse than best result"); double_VAR_H(classify_adapted_pruning_threshold, -1.0, "Threshold at which classify_adapted_pruning_factor starts"); INT_VAR_H(classify_adapt_proto_threshold, 230, "Threshold for good protos during adaptive 0-255"); INT_VAR_H(classify_adapt_feature_threshold, 230, "Threshold for good features during adaptive 0-255"); BOOL_VAR_H(disable_character_fragments, TRUE, "Do not include character fragments in the" " results of the classifier"); double_VAR_H(classify_character_fragments_garbage_certainty_threshold, -3.0, "Exclude fragments that do not match any whole character" " with at least this certainty"); BOOL_VAR_H(classify_debug_character_fragments, FALSE, "Bring up graphical debugging windows for fragments training"); BOOL_VAR_H(matcher_debug_separate_windows, FALSE, "Use two different windows for debugging the matching: " "One for the protos and one for the features."); STRING_VAR_H(classify_learn_debug_str, "", "Class str to debug learning"); /* intmatcher.cpp **********************************************************/ INT_VAR_H(classify_class_pruner_threshold, 229, "Class Pruner Threshold 0-255"); INT_VAR_H(classify_class_pruner_multiplier, 15, "Class Pruner Multiplier 0-255: "); INT_VAR_H(classify_cp_cutoff_strength, 7, "Class Pruner CutoffStrength: "); INT_VAR_H(classify_integer_matcher_multiplier, 10, "Integer Matcher Multiplier 0-255: "); // Use class variables to hold onto built-in templates and adapted templates. INT_TEMPLATES PreTrainedTemplates; ADAPT_TEMPLATES AdaptedTemplates; // The backup adapted templates are created from the previous page (only) // so they are always ready and reasonably well trained if the primary // adapted templates become full. ADAPT_TEMPLATES BackupAdaptedTemplates; // Create dummy proto and config masks for use with the built-in templates. BIT_VECTOR AllProtosOn; BIT_VECTOR AllConfigsOn; BIT_VECTOR AllConfigsOff; BIT_VECTOR TempProtoMask; bool EnableLearning; /* normmatch.cpp */ NORM_PROTOS *NormProtos; /* font detection ***********************************************************/ UnicityTable fontinfo_table_; // Without shape training, each class_id, config pair represents a single // unichar id/font combination, so each fontset_table_ entry holds font ids // for each config in the class. // With shape training, each class_id, config pair represents a single // shape_table_ index, so the fontset_table_ stores the shape_table_ index, // and the shape_table_ must be consulted to obtain the actual unichar_id/ // font combinations that the shape represents. UnicityTable fontset_table_; INT_VAR_H(il1_adaption_test, 0, "Don't adapt to i/I at beginning of word"); BOOL_VAR_H(classify_bln_numeric_mode, 0, "Assume the input is numbers [0-9]."); double_VAR_H(speckle_large_max_size, 0.30, "Max large speckle size"); double_VAR_H(speckle_rating_penalty, 10.0, "Penalty to add to worst rating for noise"); protected: IntegerMatcher im_; FEATURE_DEFS_STRUCT feature_defs_; // If a shape_table_ is present, it is used to remap classifier output in // ExpandShapesAndApplyCorrections. font_ids referenced by configs actually // mean an index to the shape_table_ and the choices returned are *all* the // shape_table_ entries at that index. ShapeTable* shape_table_; private: Dict dict_; // The currently active static classifier. ShapeClassifier* static_classifier_; /* variables used to hold performance statistics */ int NumAdaptationsFailed; // Training data gathered here for all the images in a document. STRING tr_file_data_; // Expected number of features in the class pruner, used to penalize // unknowns that have too few features (like a c being classified as e) so // it doesn't recognize everything as '@' or '#'. // CharNormCutoffs is for the static classifier (with no shapetable). // BaselineCutoffs gets a copy of CharNormCutoffs as an estimate of the real // value in the adaptive classifier. Both are indexed by unichar_id. // shapetable_cutoffs_ provides a similar value for each shape in the // shape_table_ uint16_t CharNormCutoffs[MAX_NUM_CLASSES]; uint16_t BaselineCutoffs[MAX_NUM_CLASSES]; GenericVector shapetable_cutoffs_; ScrollView* learn_debug_win_; ScrollView* learn_fragmented_word_debug_win_; ScrollView* learn_fragments_debug_win_; }; } // namespace tesseract #endif // DISABLED_LEGACY_ENGINE #endif // TESSERACT_CLASSIFY_CLASSIFY_H_