/////////////////////////////////////////////////////////////////////// // File: lstmtrainer.cpp // Description: Top-level line trainer class for LSTM-based networks. // Author: Ray Smith // Created: Fir May 03 09:14:06 PST 2013 // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H #include "config_auto.h" #endif #include "lstmtrainer.h" #include #include "allheaders.h" #include "boxread.h" #include "ctc.h" #include "imagedata.h" #include "input.h" #include "networkbuilder.h" #include "ratngs.h" #include "recodebeam.h" #ifdef INCLUDE_TENSORFLOW #include "tfnetwork.h" #endif #include "tprintf.h" #include "callcpp.h" namespace tesseract { // Min actual error rate increase to constitute divergence. const double kMinDivergenceRate = 50.0; // Min iterations since last best before acting on a stall. const int kMinStallIterations = 10000; // Fraction of current char error rate that sub_trainer_ has to be ahead // before we declare the sub_trainer_ a success and switch to it. const double kSubTrainerMarginFraction = 3.0 / 128; // Factor to reduce learning rate on divergence. const double kLearningRateDecay = sqrt(0.5); // LR adjustment iterations. const int kNumAdjustmentIterations = 100; // How often to add data to the error_graph_. const int kErrorGraphInterval = 1000; // Number of training images to train between calls to MaintainCheckpoints. const int kNumPagesPerBatch = 100; // Min percent error rate to consider start-up phase over. const int kMinStartedErrorRate = 75; // Error rate at which to transition to stage 1. const double kStageTransitionThreshold = 10.0; // Confidence beyond which the truth is more likely wrong than the recognizer. const double kHighConfidence = 0.9375; // 15/16. // Fraction of weight sign-changing total to constitute a definite improvement. const double kImprovementFraction = 15.0 / 16.0; // Fraction of last written best to make it worth writing another. const double kBestCheckpointFraction = 31.0 / 32.0; // Scale factor for display of target activations of CTC. const int kTargetXScale = 5; const int kTargetYScale = 100; LSTMTrainer::LSTMTrainer() : training_data_(0), file_reader_(LoadDataFromFile), file_writer_(SaveDataToFile), checkpoint_reader_( NewPermanentTessCallback(this, &LSTMTrainer::ReadTrainingDump)), checkpoint_writer_( NewPermanentTessCallback(this, &LSTMTrainer::SaveTrainingDump)), sub_trainer_(NULL) { EmptyConstructor(); debug_interval_ = 0; } LSTMTrainer::LSTMTrainer(FileReader file_reader, FileWriter file_writer, CheckPointReader checkpoint_reader, CheckPointWriter checkpoint_writer, const char* model_base, const char* checkpoint_name, int debug_interval, inT64 max_memory) : training_data_(max_memory), file_reader_(file_reader), file_writer_(file_writer), checkpoint_reader_(checkpoint_reader), checkpoint_writer_(checkpoint_writer), sub_trainer_(NULL), mgr_(file_reader) { EmptyConstructor(); if (file_reader_ == NULL) file_reader_ = LoadDataFromFile; if (file_writer_ == NULL) file_writer_ = SaveDataToFile; if (checkpoint_reader_ == NULL) { checkpoint_reader_ = NewPermanentTessCallback(this, &LSTMTrainer::ReadTrainingDump); } if (checkpoint_writer_ == NULL) { checkpoint_writer_ = NewPermanentTessCallback(this, &LSTMTrainer::SaveTrainingDump); } debug_interval_ = debug_interval; model_base_ = model_base; checkpoint_name_ = checkpoint_name; } LSTMTrainer::~LSTMTrainer() { delete align_win_; delete target_win_; delete ctc_win_; delete recon_win_; delete checkpoint_reader_; delete checkpoint_writer_; delete sub_trainer_; } // Tries to deserialize a trainer from the given file and silently returns // false in case of failure. bool LSTMTrainer::TryLoadingCheckpoint(const char* filename, const char* old_traineddata) { GenericVector data; if (!(*file_reader_)(filename, &data)) return false; tprintf("Loaded file %s, unpacking...\n", filename); if (!checkpoint_reader_->Run(data, this)) return false; StaticShape shape = network_->OutputShape(network_->InputShape()); if (((old_traineddata == nullptr || *old_traineddata == '\0') && network_->NumOutputs() == recoder_.code_range()) || filename == old_traineddata) { return true; // Normal checkpoint load complete. } tprintf("Code range changed from %d to %d!!\n", network_->NumOutputs(), recoder_.code_range()); if (old_traineddata == nullptr || *old_traineddata == '\0') { tprintf("Must supply the old traineddata for code conversion!\n"); return false; } TessdataManager old_mgr; ASSERT_HOST(old_mgr.Init(old_traineddata)); TFile fp; if (!old_mgr.GetComponent(TESSDATA_LSTM_UNICHARSET, &fp)) return false; UNICHARSET old_chset; if (!old_chset.load_from_file(&fp, false)) return false; if (!old_mgr.GetComponent(TESSDATA_LSTM_RECODER, &fp)) return false; UnicharCompress old_recoder; if (!old_recoder.DeSerialize(&fp)) return false; std::vector code_map = MapRecoder(old_chset, old_recoder); // Set the null_char_ to the new value. int old_null_char = null_char_; SetNullChar(); // Map the softmax(s) in the network. network_->RemapOutputs(old_recoder.code_range(), code_map); tprintf("Previous null char=%d mapped to %d\n", old_null_char, null_char_); return true; } // Initializes the trainer with a network_spec in the network description // net_flags control network behavior according to the NetworkFlags enum. // There isn't really much difference between them - only where the effects // are implemented. // For other args see NetworkBuilder::InitNetwork. // Note: Be sure to call InitCharSet before InitNetwork! bool LSTMTrainer::InitNetwork(const STRING& network_spec, int append_index, int net_flags, float weight_range, float learning_rate, float momentum, float adam_beta) { mgr_.SetVersionString(mgr_.VersionString() + ":" + network_spec.string()); adam_beta_ = adam_beta; learning_rate_ = learning_rate; momentum_ = momentum; SetNullChar(); if (!NetworkBuilder::InitNetwork(recoder_.code_range(), network_spec, append_index, net_flags, weight_range, &randomizer_, &network_)) { return false; } network_str_ += network_spec; tprintf("Built network:%s from request %s\n", network_->spec().string(), network_spec.string()); tprintf( "Training parameters:\n Debug interval = %d," " weights = %g, learning rate = %g, momentum=%g\n", debug_interval_, weight_range, learning_rate_, momentum_); tprintf("null char=%d\n", null_char_); return true; } // Initializes a trainer from a serialized TFNetworkModel proto. // Returns the global step of TensorFlow graph or 0 if failed. int LSTMTrainer::InitTensorFlowNetwork(const std::string& tf_proto) { #ifdef INCLUDE_TENSORFLOW delete network_; TFNetwork* tf_net = new TFNetwork("TensorFlow"); training_iteration_ = tf_net->InitFromProtoStr(tf_proto); if (training_iteration_ == 0) { tprintf("InitFromProtoStr failed!!\n"); return 0; } network_ = tf_net; ASSERT_HOST(recoder_.code_range() == tf_net->num_classes()); return training_iteration_; #else tprintf("TensorFlow not compiled in! -DINCLUDE_TENSORFLOW\n"); return 0; #endif } // Resets all the iteration counters for fine tuning or traininng a head, // where we want the error reporting to reset. void LSTMTrainer::InitIterations() { sample_iteration_ = 0; training_iteration_ = 0; learning_iteration_ = 0; prev_sample_iteration_ = 0; best_error_rate_ = 100.0; best_iteration_ = 0; worst_error_rate_ = 0.0; worst_iteration_ = 0; stall_iteration_ = kMinStallIterations; improvement_steps_ = kMinStallIterations; perfect_delay_ = 0; last_perfect_training_iteration_ = 0; for (int i = 0; i < ET_COUNT; ++i) { best_error_rates_[i] = 100.0; worst_error_rates_[i] = 0.0; error_buffers_[i].init_to_size(kRollingBufferSize_, 0.0); error_rates_[i] = 100.0; } error_rate_of_last_saved_best_ = kMinStartedErrorRate; } // If the training sample is usable, grid searches for the optimal // dict_ratio/cert_offset, and returns the results in a string of space- // separated triplets of ratio,offset=worderr. Trainability LSTMTrainer::GridSearchDictParams( const ImageData* trainingdata, int iteration, double min_dict_ratio, double dict_ratio_step, double max_dict_ratio, double min_cert_offset, double cert_offset_step, double max_cert_offset, STRING* results) { sample_iteration_ = iteration; NetworkIO fwd_outputs, targets; Trainability result = PrepareForBackward(trainingdata, &fwd_outputs, &targets); if (result == UNENCODABLE || result == HI_PRECISION_ERR || dict_ == NULL) return result; // Encode/decode the truth to get the normalization. GenericVector truth_labels, ocr_labels, xcoords; ASSERT_HOST(EncodeString(trainingdata->transcription(), &truth_labels)); // NO-dict error. RecodeBeamSearch base_search(recoder_, null_char_, SimpleTextOutput(), NULL); base_search.Decode(fwd_outputs, 1.0, 0.0, RecodeBeamSearch::kMinCertainty, NULL); base_search.ExtractBestPathAsLabels(&ocr_labels, &xcoords); STRING truth_text = DecodeLabels(truth_labels); STRING ocr_text = DecodeLabels(ocr_labels); double baseline_error = ComputeWordError(&truth_text, &ocr_text); results->add_str_double("0,0=", baseline_error); RecodeBeamSearch search(recoder_, null_char_, SimpleTextOutput(), dict_); for (double r = min_dict_ratio; r < max_dict_ratio; r += dict_ratio_step) { for (double c = min_cert_offset; c < max_cert_offset; c += cert_offset_step) { search.Decode(fwd_outputs, r, c, RecodeBeamSearch::kMinCertainty, NULL); search.ExtractBestPathAsLabels(&ocr_labels, &xcoords); truth_text = DecodeLabels(truth_labels); ocr_text = DecodeLabels(ocr_labels); // This is destructive on both strings. double word_error = ComputeWordError(&truth_text, &ocr_text); if ((r == min_dict_ratio && c == min_cert_offset) || !std::isfinite(word_error)) { STRING t = DecodeLabels(truth_labels); STRING o = DecodeLabels(ocr_labels); tprintf("r=%g, c=%g, truth=%s, ocr=%s, wderr=%g, truth[0]=%d\n", r, c, t.string(), o.string(), word_error, truth_labels[0]); } results->add_str_double(" ", r); results->add_str_double(",", c); results->add_str_double("=", word_error); } } return result; } // Provides output on the distribution of weight values. void LSTMTrainer::DebugNetwork() { network_->DebugWeights(); } // Loads a set of lstmf files that were created using the lstm.train config to // tesseract into memory ready for training. Returns false if nothing was // loaded. bool LSTMTrainer::LoadAllTrainingData(const GenericVector& filenames, CachingStrategy cache_strategy) { training_data_.Clear(); return training_data_.LoadDocuments(filenames, cache_strategy, file_reader_); } // Keeps track of best and locally worst char error_rate and launches tests // using tester, when a new min or max is reached. // Writes checkpoints at appropriate times and builds and returns a log message // to indicate progress. Returns false if nothing interesting happened. bool LSTMTrainer::MaintainCheckpoints(TestCallback tester, STRING* log_msg) { PrepareLogMsg(log_msg); double error_rate = CharError(); int iteration = learning_iteration(); if (iteration >= stall_iteration_ && error_rate > best_error_rate_ * (1.0 + kSubTrainerMarginFraction) && best_error_rate_ < kMinStartedErrorRate && !best_trainer_.empty()) { // It hasn't got any better in a long while, and is a margin worse than the // best, so go back to the best model and try a different learning rate. StartSubtrainer(log_msg); } SubTrainerResult sub_trainer_result = STR_NONE; if (sub_trainer_ != NULL) { sub_trainer_result = UpdateSubtrainer(log_msg); if (sub_trainer_result == STR_REPLACED) { // Reset the inputs, as we have overwritten *this. error_rate = CharError(); iteration = learning_iteration(); PrepareLogMsg(log_msg); } } bool result = true; // Something interesting happened. GenericVector rec_model_data; if (error_rate < best_error_rate_) { SaveRecognitionDump(&rec_model_data); log_msg->add_str_double(" New best char error = ", error_rate); *log_msg += UpdateErrorGraph(iteration, error_rate, rec_model_data, tester); // If sub_trainer_ is not NULL, either *this beat it to a new best, or it // just overwrote *this. In either case, we have finished with it. delete sub_trainer_; sub_trainer_ = NULL; stall_iteration_ = learning_iteration() + kMinStallIterations; if (TransitionTrainingStage(kStageTransitionThreshold)) { log_msg->add_str_int(" Transitioned to stage ", CurrentTrainingStage()); } checkpoint_writer_->Run(NO_BEST_TRAINER, this, &best_trainer_); if (error_rate < error_rate_of_last_saved_best_ * kBestCheckpointFraction) { STRING best_model_name = DumpFilename(); if (!(*file_writer_)(best_trainer_, best_model_name)) { *log_msg += " failed to write best model:"; } else { *log_msg += " wrote best model:"; error_rate_of_last_saved_best_ = best_error_rate_; } *log_msg += best_model_name; } } else if (error_rate > worst_error_rate_) { SaveRecognitionDump(&rec_model_data); log_msg->add_str_double(" New worst char error = ", error_rate); *log_msg += UpdateErrorGraph(iteration, error_rate, rec_model_data, tester); if (worst_error_rate_ > best_error_rate_ + kMinDivergenceRate && best_error_rate_ < kMinStartedErrorRate && !best_trainer_.empty()) { // Error rate has ballooned. Go back to the best model. *log_msg += "\nDivergence! "; // Copy best_trainer_ before reading it, as it will get overwritten. GenericVector revert_data(best_trainer_); if (checkpoint_reader_->Run(revert_data, this)) { LogIterations("Reverted to", log_msg); ReduceLearningRates(this, log_msg); } else { LogIterations("Failed to Revert at", log_msg); } // If it fails again, we will wait twice as long before reverting again. stall_iteration_ = iteration + 2 * (iteration - learning_iteration()); // Re-save the best trainer with the new learning rates and stall // iteration. checkpoint_writer_->Run(NO_BEST_TRAINER, this, &best_trainer_); } } else { // Something interesting happened only if the sub_trainer_ was trained. result = sub_trainer_result != STR_NONE; } if (checkpoint_writer_ != NULL && file_writer_ != NULL && checkpoint_name_.length() > 0) { // Write a current checkpoint. GenericVector checkpoint; if (!checkpoint_writer_->Run(FULL, this, &checkpoint) || !(*file_writer_)(checkpoint, checkpoint_name_)) { *log_msg += " failed to write checkpoint."; } else { *log_msg += " wrote checkpoint."; } } *log_msg += "\n"; return result; } // Builds a string containing a progress message with current error rates. void LSTMTrainer::PrepareLogMsg(STRING* log_msg) const { LogIterations("At", log_msg); log_msg->add_str_double(", Mean rms=", error_rates_[ET_RMS]); log_msg->add_str_double("%, delta=", error_rates_[ET_DELTA]); log_msg->add_str_double("%, char train=", error_rates_[ET_CHAR_ERROR]); log_msg->add_str_double("%, word train=", error_rates_[ET_WORD_RECERR]); log_msg->add_str_double("%, skip ratio=", error_rates_[ET_SKIP_RATIO]); *log_msg += "%, "; } // Appends iteration learning_iteration()/training_iteration()/ // sample_iteration() to the log_msg. void LSTMTrainer::LogIterations(const char* intro_str, STRING* log_msg) const { *log_msg += intro_str; log_msg->add_str_int(" iteration ", learning_iteration()); log_msg->add_str_int("/", training_iteration()); log_msg->add_str_int("/", sample_iteration()); } // Returns true and increments the training_stage_ if the error rate has just // passed through the given threshold for the first time. bool LSTMTrainer::TransitionTrainingStage(float error_threshold) { if (best_error_rate_ < error_threshold && training_stage_ + 1 < num_training_stages_) { ++training_stage_; return true; } return false; } // Writes to the given file. Returns false in case of error. bool LSTMTrainer::Serialize(SerializeAmount serialize_amount, const TessdataManager* mgr, TFile* fp) const { if (!LSTMRecognizer::Serialize(mgr, fp)) return false; if (fp->FWrite(&learning_iteration_, sizeof(learning_iteration_), 1) != 1) return false; if (fp->FWrite(&prev_sample_iteration_, sizeof(prev_sample_iteration_), 1) != 1) return false; if (fp->FWrite(&perfect_delay_, sizeof(perfect_delay_), 1) != 1) return false; if (fp->FWrite(&last_perfect_training_iteration_, sizeof(last_perfect_training_iteration_), 1) != 1) return false; for (int i = 0; i < ET_COUNT; ++i) { if (!error_buffers_[i].Serialize(fp)) return false; } if (fp->FWrite(&error_rates_, sizeof(error_rates_), 1) != 1) return false; if (fp->FWrite(&training_stage_, sizeof(training_stage_), 1) != 1) return false; uinT8 amount = serialize_amount; if (fp->FWrite(&amount, sizeof(amount), 1) != 1) return false; if (serialize_amount == LIGHT) return true; // We are done. if (fp->FWrite(&best_error_rate_, sizeof(best_error_rate_), 1) != 1) return false; if (fp->FWrite(&best_error_rates_, sizeof(best_error_rates_), 1) != 1) return false; if (fp->FWrite(&best_iteration_, sizeof(best_iteration_), 1) != 1) return false; if (fp->FWrite(&worst_error_rate_, sizeof(worst_error_rate_), 1) != 1) return false; if (fp->FWrite(&worst_error_rates_, sizeof(worst_error_rates_), 1) != 1) return false; if (fp->FWrite(&worst_iteration_, sizeof(worst_iteration_), 1) != 1) return false; if (fp->FWrite(&stall_iteration_, sizeof(stall_iteration_), 1) != 1) return false; if (!best_model_data_.Serialize(fp)) return false; if (!worst_model_data_.Serialize(fp)) return false; if (serialize_amount != NO_BEST_TRAINER && !best_trainer_.Serialize(fp)) return false; GenericVector sub_data; if (sub_trainer_ != NULL && !SaveTrainingDump(LIGHT, sub_trainer_, &sub_data)) return false; if (!sub_data.Serialize(fp)) return false; if (!best_error_history_.Serialize(fp)) return false; if (!best_error_iterations_.Serialize(fp)) return false; if (fp->FWrite(&improvement_steps_, sizeof(improvement_steps_), 1) != 1) return false; return true; } // Reads from the given file. Returns false in case of error. // NOTE: It is assumed that the trainer is never read cross-endian. bool LSTMTrainer::DeSerialize(const TessdataManager* mgr, TFile* fp) { if (!LSTMRecognizer::DeSerialize(mgr, fp)) return false; if (fp->FRead(&learning_iteration_, sizeof(learning_iteration_), 1) != 1) { // Special case. If we successfully decoded the recognizer, but fail here // then it means we were just given a recognizer, so issue a warning and // allow it. tprintf("Warning: LSTMTrainer deserialized an LSTMRecognizer!\n"); learning_iteration_ = 0; network_->SetEnableTraining(TS_ENABLED); return true; } if (fp->FReadEndian(&prev_sample_iteration_, sizeof(prev_sample_iteration_), 1) != 1) return false; if (fp->FReadEndian(&perfect_delay_, sizeof(perfect_delay_), 1) != 1) return false; if (fp->FReadEndian(&last_perfect_training_iteration_, sizeof(last_perfect_training_iteration_), 1) != 1) return false; for (int i = 0; i < ET_COUNT; ++i) { if (!error_buffers_[i].DeSerialize(fp)) return false; } if (fp->FRead(&error_rates_, sizeof(error_rates_), 1) != 1) return false; if (fp->FReadEndian(&training_stage_, sizeof(training_stage_), 1) != 1) return false; uinT8 amount; if (fp->FRead(&amount, sizeof(amount), 1) != 1) return false; if (amount == LIGHT) return true; // Don't read the rest. if (fp->FReadEndian(&best_error_rate_, sizeof(best_error_rate_), 1) != 1) return false; if (fp->FReadEndian(&best_error_rates_, sizeof(best_error_rates_), 1) != 1) return false; if (fp->FReadEndian(&best_iteration_, sizeof(best_iteration_), 1) != 1) return false; if (fp->FReadEndian(&worst_error_rate_, sizeof(worst_error_rate_), 1) != 1) return false; if (fp->FReadEndian(&worst_error_rates_, sizeof(worst_error_rates_), 1) != 1) return false; if (fp->FReadEndian(&worst_iteration_, sizeof(worst_iteration_), 1) != 1) return false; if (fp->FReadEndian(&stall_iteration_, sizeof(stall_iteration_), 1) != 1) return false; if (!best_model_data_.DeSerialize(fp)) return false; if (!worst_model_data_.DeSerialize(fp)) return false; if (amount != NO_BEST_TRAINER && !best_trainer_.DeSerialize(fp)) return false; GenericVector sub_data; if (!sub_data.DeSerialize(fp)) return false; delete sub_trainer_; if (sub_data.empty()) { sub_trainer_ = NULL; } else { sub_trainer_ = new LSTMTrainer(); if (!ReadTrainingDump(sub_data, sub_trainer_)) return false; } if (!best_error_history_.DeSerialize(fp)) return false; if (!best_error_iterations_.DeSerialize(fp)) return false; if (fp->FReadEndian(&improvement_steps_, sizeof(improvement_steps_), 1) != 1) return false; return true; } // De-serializes the saved best_trainer_ into sub_trainer_, and adjusts the // learning rates (by scaling reduction, or layer specific, according to // NF_LAYER_SPECIFIC_LR). void LSTMTrainer::StartSubtrainer(STRING* log_msg) { delete sub_trainer_; sub_trainer_ = new LSTMTrainer(); if (!checkpoint_reader_->Run(best_trainer_, sub_trainer_)) { *log_msg += " Failed to revert to previous best for trial!"; delete sub_trainer_; sub_trainer_ = NULL; } else { log_msg->add_str_int(" Trial sub_trainer_ from iteration ", sub_trainer_->training_iteration()); // Reduce learning rate so it doesn't diverge this time. sub_trainer_->ReduceLearningRates(this, log_msg); // If it fails again, we will wait twice as long before reverting again. int stall_offset = learning_iteration() - sub_trainer_->learning_iteration(); stall_iteration_ = learning_iteration() + 2 * stall_offset; sub_trainer_->stall_iteration_ = stall_iteration_; // Re-save the best trainer with the new learning rates and stall iteration. checkpoint_writer_->Run(NO_BEST_TRAINER, sub_trainer_, &best_trainer_); } } // While the sub_trainer_ is behind the current training iteration and its // training error is at least kSubTrainerMarginFraction better than the // current training error, trains the sub_trainer_, and returns STR_UPDATED if // it did anything. If it catches up, and has a better error rate than the // current best, as well as a margin over the current error rate, then the // trainer in *this is replaced with sub_trainer_, and STR_REPLACED is // returned. STR_NONE is returned if the subtrainer wasn't good enough to // receive any training iterations. SubTrainerResult LSTMTrainer::UpdateSubtrainer(STRING* log_msg) { double training_error = CharError(); double sub_error = sub_trainer_->CharError(); double sub_margin = (training_error - sub_error) / sub_error; if (sub_margin >= kSubTrainerMarginFraction) { log_msg->add_str_double(" sub_trainer=", sub_error); log_msg->add_str_double(" margin=", 100.0 * sub_margin); *log_msg += "\n"; // Catch up to current iteration. int end_iteration = training_iteration(); while (sub_trainer_->training_iteration() < end_iteration && sub_margin >= kSubTrainerMarginFraction) { int target_iteration = sub_trainer_->training_iteration() + kNumPagesPerBatch; while (sub_trainer_->training_iteration() < target_iteration) { sub_trainer_->TrainOnLine(this, false); } STRING batch_log = "Sub:"; sub_trainer_->PrepareLogMsg(&batch_log); batch_log += "\n"; tprintf("UpdateSubtrainer:%s", batch_log.string()); *log_msg += batch_log; sub_error = sub_trainer_->CharError(); sub_margin = (training_error - sub_error) / sub_error; } if (sub_error < best_error_rate_ && sub_margin >= kSubTrainerMarginFraction) { // The sub_trainer_ has won the race to a new best. Switch to it. GenericVector updated_trainer; SaveTrainingDump(LIGHT, sub_trainer_, &updated_trainer); ReadTrainingDump(updated_trainer, this); log_msg->add_str_int(" Sub trainer wins at iteration ", training_iteration()); *log_msg += "\n"; return STR_REPLACED; } return STR_UPDATED; } return STR_NONE; } // Reduces network learning rates, either for everything, or for layers // independently, according to NF_LAYER_SPECIFIC_LR. void LSTMTrainer::ReduceLearningRates(LSTMTrainer* samples_trainer, STRING* log_msg) { if (network_->TestFlag(NF_LAYER_SPECIFIC_LR)) { int num_reduced = ReduceLayerLearningRates( kLearningRateDecay, kNumAdjustmentIterations, samples_trainer); log_msg->add_str_int("\nReduced learning rate on layers: ", num_reduced); } else { ScaleLearningRate(kLearningRateDecay); log_msg->add_str_double("\nReduced learning rate to :", learning_rate_); } *log_msg += "\n"; } // Considers reducing the learning rate independently for each layer down by // factor(<1), or leaving it the same, by double-training the given number of // samples and minimizing the amount of changing of sign of weight updates. // Even if it looks like all weights should remain the same, an adjustment // will be made to guarantee a different result when reverting to an old best. // Returns the number of layer learning rates that were reduced. int LSTMTrainer::ReduceLayerLearningRates(double factor, int num_samples, LSTMTrainer* samples_trainer) { enum WhichWay { LR_DOWN, // Learning rate will go down by factor. LR_SAME, // Learning rate will stay the same. LR_COUNT // Size of arrays. }; GenericVector layers = EnumerateLayers(); int num_layers = layers.size(); GenericVector num_weights; num_weights.init_to_size(num_layers, 0); GenericVector bad_sums[LR_COUNT]; GenericVector ok_sums[LR_COUNT]; for (int i = 0; i < LR_COUNT; ++i) { bad_sums[i].init_to_size(num_layers, 0.0); ok_sums[i].init_to_size(num_layers, 0.0); } double momentum_factor = 1.0 / (1.0 - momentum_); GenericVector orig_trainer; samples_trainer->SaveTrainingDump(LIGHT, this, &orig_trainer); for (int i = 0; i < num_layers; ++i) { Network* layer = GetLayer(layers[i]); num_weights[i] = layer->IsTraining() ? layer->num_weights() : 0; } int iteration = sample_iteration(); for (int s = 0; s < num_samples; ++s) { // Which way will we modify the learning rate? for (int ww = 0; ww < LR_COUNT; ++ww) { // Transfer momentum to learning rate and adjust by the ww factor. float ww_factor = momentum_factor; if (ww == LR_DOWN) ww_factor *= factor; // Make a copy of *this, so we can mess about without damaging anything. LSTMTrainer copy_trainer; samples_trainer->ReadTrainingDump(orig_trainer, ©_trainer); // Clear the updates, doing nothing else. copy_trainer.network_->Update(0.0, 0.0, 0.0, 0); // Adjust the learning rate in each layer. for (int i = 0; i < num_layers; ++i) { if (num_weights[i] == 0) continue; copy_trainer.ScaleLayerLearningRate(layers[i], ww_factor); } copy_trainer.SetIteration(iteration); // Train on the sample, but keep the update in updates_ instead of // applying to the weights. const ImageData* trainingdata = copy_trainer.TrainOnLine(samples_trainer, true); if (trainingdata == NULL) continue; // We'll now use this trainer again for each layer. GenericVector updated_trainer; samples_trainer->SaveTrainingDump(LIGHT, ©_trainer, &updated_trainer); for (int i = 0; i < num_layers; ++i) { if (num_weights[i] == 0) continue; LSTMTrainer layer_trainer; samples_trainer->ReadTrainingDump(updated_trainer, &layer_trainer); Network* layer = layer_trainer.GetLayer(layers[i]); // Update the weights in just the layer, using Adam if enabled. layer->Update(0.0, momentum_, adam_beta_, layer_trainer.training_iteration_ + 1); // Zero the updates matrix again. layer->Update(0.0, 0.0, 0.0, 0); // Train again on the same sample, again holding back the updates. layer_trainer.TrainOnLine(trainingdata, true); // Count the sign changes in the updates in layer vs in copy_trainer. float before_bad = bad_sums[ww][i]; float before_ok = ok_sums[ww][i]; layer->CountAlternators(*copy_trainer.GetLayer(layers[i]), &ok_sums[ww][i], &bad_sums[ww][i]); float bad_frac = bad_sums[ww][i] + ok_sums[ww][i] - before_bad - before_ok; if (bad_frac > 0.0f) bad_frac = (bad_sums[ww][i] - before_bad) / bad_frac; } } ++iteration; } int num_lowered = 0; for (int i = 0; i < num_layers; ++i) { if (num_weights[i] == 0) continue; Network* layer = GetLayer(layers[i]); float lr = GetLayerLearningRate(layers[i]); double total_down = bad_sums[LR_DOWN][i] + ok_sums[LR_DOWN][i]; double total_same = bad_sums[LR_SAME][i] + ok_sums[LR_SAME][i]; double frac_down = bad_sums[LR_DOWN][i] / total_down; double frac_same = bad_sums[LR_SAME][i] / total_same; tprintf("Layer %d=%s: lr %g->%g%%, lr %g->%g%%", i, layer->name().string(), lr * factor, 100.0 * frac_down, lr, 100.0 * frac_same); if (frac_down < frac_same * kImprovementFraction) { tprintf(" REDUCED\n"); ScaleLayerLearningRate(layers[i], factor); ++num_lowered; } else { tprintf(" SAME\n"); } } if (num_lowered == 0) { // Just lower everything to make sure. for (int i = 0; i < num_layers; ++i) { if (num_weights[i] > 0) { ScaleLayerLearningRate(layers[i], factor); ++num_lowered; } } } return num_lowered; } // Converts the string to integer class labels, with appropriate null_char_s // in between if not in SimpleTextOutput mode. Returns false on failure. /* static */ bool LSTMTrainer::EncodeString(const STRING& str, const UNICHARSET& unicharset, const UnicharCompress* recoder, bool simple_text, int null_char, GenericVector* labels) { if (str.string() == NULL || str.length() <= 0) { tprintf("Empty truth string!\n"); return false; } int err_index; GenericVector internal_labels; labels->truncate(0); if (!simple_text) labels->push_back(null_char); string cleaned = unicharset.CleanupString(str.string()); if (unicharset.encode_string(cleaned.c_str(), true, &internal_labels, NULL, &err_index)) { bool success = true; for (int i = 0; i < internal_labels.size(); ++i) { if (recoder != NULL) { // Re-encode labels via recoder. RecodedCharID code; int len = recoder->EncodeUnichar(internal_labels[i], &code); if (len > 0) { for (int j = 0; j < len; ++j) { labels->push_back(code(j)); if (!simple_text) labels->push_back(null_char); } } else { success = false; err_index = 0; break; } } else { labels->push_back(internal_labels[i]); if (!simple_text) labels->push_back(null_char); } } if (success) return true; } tprintf("Encoding of string failed! Failure bytes:"); while (err_index < cleaned.size()) { tprintf(" %x", cleaned[err_index++]); } tprintf("\n"); return false; } // Performs forward-backward on the given trainingdata. // Returns a Trainability enum to indicate the suitability of the sample. Trainability LSTMTrainer::TrainOnLine(const ImageData* trainingdata, bool batch) { NetworkIO fwd_outputs, targets; Trainability trainable = PrepareForBackward(trainingdata, &fwd_outputs, &targets); ++sample_iteration_; if (trainable == UNENCODABLE || trainable == NOT_BOXED) { return trainable; // Sample was unusable. } bool debug = debug_interval_ > 0 && training_iteration() % debug_interval_ == 0; // Run backprop on the output. NetworkIO bp_deltas; if (network_->IsTraining() && (trainable != PERFECT || training_iteration() > last_perfect_training_iteration_ + perfect_delay_)) { network_->Backward(debug, targets, &scratch_space_, &bp_deltas); network_->Update(learning_rate_, batch ? -1.0f : momentum_, adam_beta_, training_iteration_ + 1); } #ifndef GRAPHICS_DISABLED if (debug_interval_ == 1 && debug_win_ != NULL) { delete debug_win_->AwaitEvent(SVET_CLICK); } #endif // GRAPHICS_DISABLED // Roll the memory of past means. RollErrorBuffers(); return trainable; } // Prepares the ground truth, runs forward, and prepares the targets. // Returns a Trainability enum to indicate the suitability of the sample. Trainability LSTMTrainer::PrepareForBackward(const ImageData* trainingdata, NetworkIO* fwd_outputs, NetworkIO* targets) { if (trainingdata == NULL) { tprintf("Null trainingdata.\n"); return UNENCODABLE; } // Ensure repeatability of random elements even across checkpoints. bool debug = debug_interval_ > 0 && training_iteration() % debug_interval_ == 0; GenericVector truth_labels; if (!EncodeString(trainingdata->transcription(), &truth_labels)) { tprintf("Can't encode transcription: '%s' in language '%s'\n", trainingdata->transcription().string(), trainingdata->language().string()); return UNENCODABLE; } int w = 0; while (w < truth_labels.size() && (truth_labels[w] == UNICHAR_SPACE || truth_labels[w] == null_char_)) ++w; if (w == truth_labels.size()) { tprintf("Blank transcription: %s\n", trainingdata->transcription().string()); return UNENCODABLE; } float image_scale; NetworkIO inputs; bool invert = trainingdata->boxes().empty(); if (!RecognizeLine(*trainingdata, invert, debug, invert, &image_scale, &inputs, fwd_outputs)) { tprintf("Image not trainable\n"); return UNENCODABLE; } targets->Resize(*fwd_outputs, network_->NumOutputs()); LossType loss_type = OutputLossType(); if (loss_type == LT_SOFTMAX) { if (!ComputeTextTargets(*fwd_outputs, truth_labels, targets)) { tprintf("Compute simple targets failed!\n"); return UNENCODABLE; } } else if (loss_type == LT_CTC) { if (!ComputeCTCTargets(truth_labels, fwd_outputs, targets)) { tprintf("Compute CTC targets failed!\n"); return UNENCODABLE; } } else { tprintf("Logistic outputs not implemented yet!\n"); return UNENCODABLE; } GenericVector ocr_labels; GenericVector xcoords; LabelsFromOutputs(*fwd_outputs, &ocr_labels, &xcoords); // CTC does not produce correct target labels to begin with. if (loss_type != LT_CTC) { LabelsFromOutputs(*targets, &truth_labels, &xcoords); } if (!DebugLSTMTraining(inputs, *trainingdata, *fwd_outputs, truth_labels, *targets)) { tprintf("Input width was %d\n", inputs.Width()); return UNENCODABLE; } STRING ocr_text = DecodeLabels(ocr_labels); STRING truth_text = DecodeLabels(truth_labels); targets->SubtractAllFromFloat(*fwd_outputs); if (debug_interval_ != 0) { tprintf("Iteration %d: BEST OCR TEXT : %s\n", training_iteration(), ocr_text.string()); } double char_error = ComputeCharError(truth_labels, ocr_labels); double word_error = ComputeWordError(&truth_text, &ocr_text); double delta_error = ComputeErrorRates(*targets, char_error, word_error); if (debug_interval_ != 0) { tprintf("File %s page %d %s:\n", trainingdata->imagefilename().string(), trainingdata->page_number(), delta_error == 0.0 ? "(Perfect)" : ""); } if (delta_error == 0.0) return PERFECT; if (targets->AnySuspiciousTruth(kHighConfidence)) return HI_PRECISION_ERR; return TRAINABLE; } // Writes the trainer to memory, so that the current training state can be // restored. *this must always be the master trainer that retains the only // copy of the training data and language model. trainer is the model that is // actually serialized. bool LSTMTrainer::SaveTrainingDump(SerializeAmount serialize_amount, const LSTMTrainer* trainer, GenericVector* data) const { TFile fp; fp.OpenWrite(data); return trainer->Serialize(serialize_amount, &mgr_, &fp); } // Restores the model to *this. bool LSTMTrainer::ReadLocalTrainingDump(const TessdataManager* mgr, const char* data, int size) { if (size == 0) { tprintf("Warning: data size is 0 in LSTMTrainer::ReadLocalTrainingDump\n"); return false; } TFile fp; fp.Open(data, size); return DeSerialize(mgr, &fp); } // Writes the full recognition traineddata to the given filename. bool LSTMTrainer::SaveTraineddata(const STRING& filename) { GenericVector recognizer_data; SaveRecognitionDump(&recognizer_data); mgr_.OverwriteEntry(TESSDATA_LSTM, &recognizer_data[0], recognizer_data.size()); return mgr_.SaveFile(filename, file_writer_); } // Writes the recognizer to memory, so that it can be used for testing later. void LSTMTrainer::SaveRecognitionDump(GenericVector* data) const { TFile fp; fp.OpenWrite(data); network_->SetEnableTraining(TS_TEMP_DISABLE); ASSERT_HOST(LSTMRecognizer::Serialize(&mgr_, &fp)); network_->SetEnableTraining(TS_RE_ENABLE); } // Returns a suitable filename for a training dump, based on the model_base_, // the iteration and the error rates. STRING LSTMTrainer::DumpFilename() const { STRING filename; filename.add_str_double(model_base_.string(), best_error_rate_); filename.add_str_int("_", best_iteration_); filename += ".checkpoint"; return filename; } // Fills the whole error buffer of the given type with the given value. void LSTMTrainer::FillErrorBuffer(double new_error, ErrorTypes type) { for (int i = 0; i < kRollingBufferSize_; ++i) error_buffers_[type][i] = new_error; error_rates_[type] = 100.0 * new_error; } // Helper generates a map from each current recoder_ code (ie softmax index) // to the corresponding old_recoder code, or -1 if there isn't one. std::vector LSTMTrainer::MapRecoder( const UNICHARSET& old_chset, const UnicharCompress& old_recoder) const { int num_new_codes = recoder_.code_range(); int num_new_unichars = GetUnicharset().size(); std::vector code_map(num_new_codes, -1); for (int c = 0; c < num_new_codes; ++c) { int old_code = -1; // Find all new unichar_ids that recode to something that includes c. // The <= is to include the null char, which may be beyond the unicharset. for (int uid = 0; uid <= num_new_unichars; ++uid) { RecodedCharID codes; int length = recoder_.EncodeUnichar(uid, &codes); int code_index = 0; while (code_index < length && codes(code_index) != c) ++code_index; if (code_index == length) continue; // The old unicharset must have the same unichar. int old_uid = uid < num_new_unichars ? old_chset.unichar_to_id(GetUnicharset().id_to_unichar(uid)) : old_chset.size() - 1; if (old_uid == INVALID_UNICHAR_ID) continue; // The encoding of old_uid at the same code_index is the old code. RecodedCharID old_codes; if (code_index < old_recoder.EncodeUnichar(old_uid, &old_codes)) { old_code = old_codes(code_index); break; } } code_map[c] = old_code; } return code_map; } // Private version of InitCharSet above finishes the job after initializing // the mgr_ data member. void LSTMTrainer::InitCharSet() { EmptyConstructor(); training_flags_ = TF_COMPRESS_UNICHARSET; // Initialize the unicharset and recoder. if (!LoadCharsets(&mgr_)) { ASSERT_HOST( "Must provide a traineddata containing lstm_unicharset and" " lstm_recoder!\n" != nullptr); } SetNullChar(); } // Helper computes and sets the null_char_. void LSTMTrainer::SetNullChar() { null_char_ = GetUnicharset().has_special_codes() ? UNICHAR_BROKEN : GetUnicharset().size(); RecodedCharID code; recoder_.EncodeUnichar(null_char_, &code); null_char_ = code(0); } // Factored sub-constructor sets up reasonable default values. void LSTMTrainer::EmptyConstructor() { align_win_ = NULL; target_win_ = NULL; ctc_win_ = NULL; recon_win_ = NULL; checkpoint_iteration_ = 0; training_stage_ = 0; num_training_stages_ = 2; InitIterations(); } // Outputs the string and periodically displays the given network inputs // as an image in the given window, and the corresponding labels at the // corresponding x_starts. // Returns false if the truth string is empty. bool LSTMTrainer::DebugLSTMTraining(const NetworkIO& inputs, const ImageData& trainingdata, const NetworkIO& fwd_outputs, const GenericVector& truth_labels, const NetworkIO& outputs) { const STRING& truth_text = DecodeLabels(truth_labels); if (truth_text.string() == NULL || truth_text.length() <= 0) { tprintf("Empty truth string at decode time!\n"); return false; } if (debug_interval_ != 0) { // Get class labels, xcoords and string. GenericVector labels; GenericVector xcoords; LabelsFromOutputs(outputs, &labels, &xcoords); STRING text = DecodeLabels(labels); tprintf("Iteration %d: ALIGNED TRUTH : %s\n", training_iteration(), text.string()); if (debug_interval_ > 0 && training_iteration() % debug_interval_ == 0) { tprintf("TRAINING activation path for truth string %s\n", truth_text.string()); DebugActivationPath(outputs, labels, xcoords); DisplayForward(inputs, labels, xcoords, "LSTMTraining", &align_win_); if (OutputLossType() == LT_CTC) { DisplayTargets(fwd_outputs, "CTC Outputs", &ctc_win_); DisplayTargets(outputs, "CTC Targets", &target_win_); } } } return true; } // Displays the network targets as line a line graph. void LSTMTrainer::DisplayTargets(const NetworkIO& targets, const char* window_name, ScrollView** window) { #ifndef GRAPHICS_DISABLED // do nothing if there's no graphics. int width = targets.Width(); int num_features = targets.NumFeatures(); Network::ClearWindow(true, window_name, width * kTargetXScale, kTargetYScale, window); for (int c = 0; c < num_features; ++c) { int color = c % (ScrollView::GREEN_YELLOW - 1) + 2; (*window)->Pen(static_cast(color)); int start_t = -1; for (int t = 0; t < width; ++t) { double target = targets.f(t)[c]; target *= kTargetYScale; if (target >= 1) { if (start_t < 0) { (*window)->SetCursor(t - 1, 0); start_t = t; } (*window)->DrawTo(t, target); } else if (start_t >= 0) { (*window)->DrawTo(t, 0); (*window)->DrawTo(start_t - 1, 0); start_t = -1; } } if (start_t >= 0) { (*window)->DrawTo(width, 0); (*window)->DrawTo(start_t - 1, 0); } } (*window)->Update(); #endif // GRAPHICS_DISABLED } // Builds a no-compromises target where the first positions should be the // truth labels and the rest is padded with the null_char_. bool LSTMTrainer::ComputeTextTargets(const NetworkIO& outputs, const GenericVector& truth_labels, NetworkIO* targets) { if (truth_labels.size() > targets->Width()) { tprintf("Error: transcription %s too long to fit into target of width %d\n", DecodeLabels(truth_labels).string(), targets->Width()); return false; } for (int i = 0; i < truth_labels.size() && i < targets->Width(); ++i) { targets->SetActivations(i, truth_labels[i], 1.0); } for (int i = truth_labels.size(); i < targets->Width(); ++i) { targets->SetActivations(i, null_char_, 1.0); } return true; } // Builds a target using standard CTC. truth_labels should be pre-padded with // nulls wherever desired. They don't have to be between all labels. // outputs is input-output, as it gets clipped to minimum probability. bool LSTMTrainer::ComputeCTCTargets(const GenericVector& truth_labels, NetworkIO* outputs, NetworkIO* targets) { // Bottom-clip outputs to a minimum probability. CTC::NormalizeProbs(outputs); return CTC::ComputeCTCTargets(truth_labels, null_char_, outputs->float_array(), targets); } // Computes network errors, and stores the results in the rolling buffers, // along with the supplied text_error. // Returns the delta error of the current sample (not running average.) double LSTMTrainer::ComputeErrorRates(const NetworkIO& deltas, double char_error, double word_error) { UpdateErrorBuffer(ComputeRMSError(deltas), ET_RMS); // Delta error is the fraction of timesteps with >0.5 error in the top choice // score. If zero, then the top choice characters are guaranteed correct, // even when there is residue in the RMS error. double delta_error = ComputeWinnerError(deltas); UpdateErrorBuffer(delta_error, ET_DELTA); UpdateErrorBuffer(word_error, ET_WORD_RECERR); UpdateErrorBuffer(char_error, ET_CHAR_ERROR); // Skip ratio measures the difference between sample_iteration_ and // training_iteration_, which reflects the number of unusable samples, // usually due to unencodable truth text, or the text not fitting in the // space for the output. double skip_count = sample_iteration_ - prev_sample_iteration_; UpdateErrorBuffer(skip_count, ET_SKIP_RATIO); return delta_error; } // Computes the network activation RMS error rate. double LSTMTrainer::ComputeRMSError(const NetworkIO& deltas) { double total_error = 0.0; int width = deltas.Width(); int num_classes = deltas.NumFeatures(); for (int t = 0; t < width; ++t) { const float* class_errs = deltas.f(t); for (int c = 0; c < num_classes; ++c) { double error = class_errs[c]; total_error += error * error; } } return sqrt(total_error / (width * num_classes)); } // Computes network activation winner error rate. (Number of values that are // in error by >= 0.5 divided by number of time-steps.) More closely related // to final character error than RMS, but still directly calculable from // just the deltas. Because of the binary nature of the targets, zero winner // error is a sufficient but not necessary condition for zero char error. double LSTMTrainer::ComputeWinnerError(const NetworkIO& deltas) { int num_errors = 0; int width = deltas.Width(); int num_classes = deltas.NumFeatures(); for (int t = 0; t < width; ++t) { const float* class_errs = deltas.f(t); for (int c = 0; c < num_classes; ++c) { float abs_delta = fabs(class_errs[c]); // TODO(rays) Filtering cases where the delta is very large to cut out // GT errors doesn't work. Find a better way or get better truth. if (0.5 <= abs_delta) ++num_errors; } } return static_cast(num_errors) / width; } // Computes a very simple bag of chars char error rate. double LSTMTrainer::ComputeCharError(const GenericVector& truth_str, const GenericVector& ocr_str) { GenericVector label_counts; label_counts.init_to_size(NumOutputs(), 0); int truth_size = 0; for (int i = 0; i < truth_str.size(); ++i) { if (truth_str[i] != null_char_) { ++label_counts[truth_str[i]]; ++truth_size; } } for (int i = 0; i < ocr_str.size(); ++i) { if (ocr_str[i] != null_char_) { --label_counts[ocr_str[i]]; } } int char_errors = 0; for (int i = 0; i < label_counts.size(); ++i) { char_errors += abs(label_counts[i]); } if (truth_size == 0) { return (char_errors == 0) ? 0.0 : 1.0; } return static_cast(char_errors) / truth_size; } // Computes word recall error rate using a very simple bag of words algorithm. // NOTE that this is destructive on both input strings. double LSTMTrainer::ComputeWordError(STRING* truth_str, STRING* ocr_str) { typedef std::unordered_map > StrMap; GenericVector truth_words, ocr_words; truth_str->split(' ', &truth_words); if (truth_words.empty()) return 0.0; ocr_str->split(' ', &ocr_words); StrMap word_counts; for (int i = 0; i < truth_words.size(); ++i) { std::string truth_word(truth_words[i].string()); StrMap::iterator it = word_counts.find(truth_word); if (it == word_counts.end()) word_counts.insert(std::make_pair(truth_word, 1)); else ++it->second; } for (int i = 0; i < ocr_words.size(); ++i) { std::string ocr_word(ocr_words[i].string()); StrMap::iterator it = word_counts.find(ocr_word); if (it == word_counts.end()) word_counts.insert(std::make_pair(ocr_word, -1)); else --it->second; } int word_recall_errs = 0; for (StrMap::const_iterator it = word_counts.begin(); it != word_counts.end(); ++it) { if (it->second > 0) word_recall_errs += it->second; } return static_cast(word_recall_errs) / truth_words.size(); } // Updates the error buffer and corresponding mean of the given type with // the new_error. void LSTMTrainer::UpdateErrorBuffer(double new_error, ErrorTypes type) { int index = training_iteration_ % kRollingBufferSize_; error_buffers_[type][index] = new_error; // Compute the mean error. int mean_count = MIN(training_iteration_ + 1, error_buffers_[type].size()); double buffer_sum = 0.0; for (int i = 0; i < mean_count; ++i) buffer_sum += error_buffers_[type][i]; double mean = buffer_sum / mean_count; // Trim precision to 1/1000 of 1%. error_rates_[type] = IntCastRounded(100000.0 * mean) / 1000.0; } // Rolls error buffers and reports the current means. void LSTMTrainer::RollErrorBuffers() { prev_sample_iteration_ = sample_iteration_; if (NewSingleError(ET_DELTA) > 0.0) ++learning_iteration_; else last_perfect_training_iteration_ = training_iteration_; ++training_iteration_; if (debug_interval_ != 0) { tprintf("Mean rms=%g%%, delta=%g%%, train=%g%%(%g%%), skip ratio=%g%%\n", error_rates_[ET_RMS], error_rates_[ET_DELTA], error_rates_[ET_CHAR_ERROR], error_rates_[ET_WORD_RECERR], error_rates_[ET_SKIP_RATIO]); } } // Given that error_rate is either a new min or max, updates the best/worst // error rates, and record of progress. // Tester is an externally supplied callback function that tests on some // data set with a given model and records the error rates in a graph. STRING LSTMTrainer::UpdateErrorGraph(int iteration, double error_rate, const GenericVector& model_data, TestCallback tester) { if (error_rate > best_error_rate_ && iteration < best_iteration_ + kErrorGraphInterval) { // Too soon to record a new point. if (tester != NULL && !worst_model_data_.empty()) { mgr_.OverwriteEntry(TESSDATA_LSTM, &worst_model_data_[0], worst_model_data_.size()); return tester->Run(worst_iteration_, NULL, mgr_, CurrentTrainingStage()); } else { return ""; } } STRING result; // NOTE: there are 2 asymmetries here: // 1. We are computing the global minimum, but the local maximum in between. // 2. If the tester returns an empty string, indicating that it is busy, // call it repeatedly on new local maxima to test the previous min, but // not the other way around, as there is little point testing the maxima // between very frequent minima. if (error_rate < best_error_rate_) { // This is a new (global) minimum. if (tester != nullptr && !worst_model_data_.empty()) { mgr_.OverwriteEntry(TESSDATA_LSTM, &worst_model_data_[0], worst_model_data_.size()); result = tester->Run(worst_iteration_, worst_error_rates_, mgr_, CurrentTrainingStage()); worst_model_data_.truncate(0); best_model_data_ = model_data; } best_error_rate_ = error_rate; memcpy(best_error_rates_, error_rates_, sizeof(error_rates_)); best_iteration_ = iteration; best_error_history_.push_back(error_rate); best_error_iterations_.push_back(iteration); // Compute 2% decay time. double two_percent_more = error_rate + 2.0; int i; for (i = best_error_history_.size() - 1; i >= 0 && best_error_history_[i] < two_percent_more; --i) { } int old_iteration = i >= 0 ? best_error_iterations_[i] : 0; improvement_steps_ = iteration - old_iteration; tprintf("2 Percent improvement time=%d, best error was %g @ %d\n", improvement_steps_, i >= 0 ? best_error_history_[i] : 100.0, old_iteration); } else if (error_rate > best_error_rate_) { // This is a new (local) maximum. if (tester != NULL) { if (!best_model_data_.empty()) { mgr_.OverwriteEntry(TESSDATA_LSTM, &best_model_data_[0], best_model_data_.size()); result = tester->Run(best_iteration_, best_error_rates_, mgr_, CurrentTrainingStage()); } else if (!worst_model_data_.empty()) { // Allow for multiple data points with "worst" error rate. mgr_.OverwriteEntry(TESSDATA_LSTM, &worst_model_data_[0], worst_model_data_.size()); result = tester->Run(worst_iteration_, worst_error_rates_, mgr_, CurrentTrainingStage()); } if (result.length() > 0) best_model_data_.truncate(0); worst_model_data_ = model_data; } } worst_error_rate_ = error_rate; memcpy(worst_error_rates_, error_rates_, sizeof(error_rates_)); worst_iteration_ = iteration; return result; } } // namespace tesseract.