/////////////////////////////////////////////////////////////////////// // File: par_control.cpp // Description: Control code for parallel implementation. // Author: Ray Smith // Created: Mon Nov 04 13:23:15 PST 2013 // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include "tesseractclass.h" namespace tesseract { struct BlobData { BlobData() : blob(NULL), choices(NULL) {} BlobData(int index, Tesseract* tess, const WERD_RES& word) : blob(word.chopped_word->blobs[index]), tesseract(tess), choices(&(*word.ratings)(index, index)) {} TBLOB* blob; Tesseract* tesseract; BLOB_CHOICE_LIST** choices; }; void Tesseract::PrerecAllWordsPar(const GenericVector& words) { // Prepare all the blobs. GenericVector blobs; for (int w = 0; w < words.size(); ++w) { if (words[w].word->ratings != NULL && words[w].word->ratings->get(0, 0) == NULL) { for (int s = 0; s < words[w].lang_words.size(); ++s) { Tesseract* sub = s < sub_langs_.size() ? sub_langs_[s] : this; const WERD_RES& word = *words[w].lang_words[s]; for (int b = 0; b < word.chopped_word->NumBlobs(); ++b) { blobs.push_back(BlobData(b, sub, word)); } } } } // Pre-classify all the blobs. if (tessedit_parallelize > 1) { #pragma omp parallel for num_threads(10) for (int b = 0; b < blobs.size(); ++b) { *blobs[b].choices = blobs[b].tesseract->classify_blob(blobs[b].blob, "par", White, NULL); } } else { // TODO(AMD) parallelize this. for (int b = 0; b < blobs.size(); ++b) { *blobs[b].choices = blobs[b].tesseract->classify_blob(blobs[b].blob, "par", White, NULL); } } } } // namespace tesseract.