/********************************************************************** * File: otsuthr.cpp * Description: Simple Otsu thresholding for binarizing images. * Author: Ray Smith * Created: Fri Mar 07 12:31:01 PST 2008 * * (C) Copyright 2008, Google Inc. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #include "otsuthr.h" #include #include "allheaders.h" #include "helpers.h" #include "openclwrapper.h" namespace tesseract { // Computes the Otsu threshold(s) for the given image rectangle, making one // for each channel. Each channel is always one byte per pixel. // Returns an array of threshold values and an array of hi_values, such // that a pixel value >threshold[channel] is considered foreground if // hi_values[channel] is 0 or background if 1. A hi_value of -1 indicates // that there is no apparent foreground. At least one hi_value will not be -1. // Delete thresholds and hi_values with delete [] after use. // The return value is the number of channels in the input image, being // the size of the output thresholds and hi_values arrays. int OtsuThreshold(Pix* src_pix, int left, int top, int width, int height, int** thresholds, int** hi_values) { int num_channels = pixGetDepth(src_pix) / 8; // Of all channels with no good hi_value, keep the best so we can always // produce at least one answer. PERF_COUNT_START("OtsuThreshold") int best_hi_value = 1; int best_hi_index = 0; bool any_good_hivalue = false; double best_hi_dist = 0.0; *thresholds = new int[num_channels]; *hi_values = new int[num_channels]; // only use opencl if compiled w/ OpenCL and selected device is opencl #ifdef USE_OPENCL // all of channel 0 then all of channel 1... int* histogramAllChannels = new int[kHistogramSize * num_channels]; // Calculate Histogram on GPU OpenclDevice od; if (od.selectedDeviceIsOpenCL() && (num_channels == 1 || num_channels == 4) && top == 0 && left == 0) { od.HistogramRectOCL((unsigned char*)pixGetData(src_pix), num_channels, pixGetWpl(src_pix) * 4, left, top, width, height, kHistogramSize, histogramAllChannels); // Calculate Threshold from Histogram on cpu for (int ch = 0; ch < num_channels; ++ch) { (*thresholds)[ch] = -1; (*hi_values)[ch] = -1; int *histogram = &histogramAllChannels[kHistogramSize * ch]; int H; int best_omega_0; int best_t = OtsuStats(histogram, &H, &best_omega_0); if (best_omega_0 == 0 || best_omega_0 == H) { // This channel is empty. continue; } // To be a convincing foreground we must have a small fraction of H // or to be a convincing background we must have a large fraction of H. // In between we assume this channel contains no thresholding information. int hi_value = best_omega_0 < H * 0.5; (*thresholds)[ch] = best_t; if (best_omega_0 > H * 0.75) { any_good_hivalue = true; (*hi_values)[ch] = 0; } else if (best_omega_0 < H * 0.25) { any_good_hivalue = true; (*hi_values)[ch] = 1; } else { // In case all channels are like this, keep the best of the bad lot. double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0; if (hi_dist > best_hi_dist) { best_hi_dist = hi_dist; best_hi_value = hi_value; best_hi_index = ch; } } } } else { #endif for (int ch = 0; ch < num_channels; ++ch) { (*thresholds)[ch] = -1; (*hi_values)[ch] = -1; // Compute the histogram of the image rectangle. int histogram[kHistogramSize]; HistogramRect(src_pix, ch, left, top, width, height, histogram); int H; int best_omega_0; int best_t = OtsuStats(histogram, &H, &best_omega_0); if (best_omega_0 == 0 || best_omega_0 == H) { // This channel is empty. continue; } // To be a convincing foreground we must have a small fraction of H // or to be a convincing background we must have a large fraction of H. // In between we assume this channel contains no thresholding information. int hi_value = best_omega_0 < H * 0.5; (*thresholds)[ch] = best_t; if (best_omega_0 > H * 0.75) { any_good_hivalue = true; (*hi_values)[ch] = 0; } else if (best_omega_0 < H * 0.25) { any_good_hivalue = true; (*hi_values)[ch] = 1; } else { // In case all channels are like this, keep the best of the bad lot. double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0; if (hi_dist > best_hi_dist) { best_hi_dist = hi_dist; best_hi_value = hi_value; best_hi_index = ch; } } } #ifdef USE_OPENCL } delete[] histogramAllChannels; #endif // USE_OPENCL if (!any_good_hivalue) { // Use the best of the ones that were not good enough. (*hi_values)[best_hi_index] = best_hi_value; } PERF_COUNT_END return num_channels; } // Computes the histogram for the given image rectangle, and the given // single channel. Each channel is always one byte per pixel. // Histogram is always a kHistogramSize(256) element array to count // occurrences of each pixel value. void HistogramRect(Pix* src_pix, int channel, int left, int top, int width, int height, int* histogram) { PERF_COUNT_START("HistogramRect") int num_channels = pixGetDepth(src_pix) / 8; channel = ClipToRange(channel, 0, num_channels - 1); int bottom = top + height; memset(histogram, 0, sizeof(*histogram) * kHistogramSize); int src_wpl = pixGetWpl(src_pix); l_uint32* srcdata = pixGetData(src_pix); for (int y = top; y < bottom; ++y) { const l_uint32* linedata = srcdata + y * src_wpl; for (int x = 0; x < width; ++x) { int pixel = GET_DATA_BYTE(linedata, (x + left) * num_channels + channel); ++histogram[pixel]; } } PERF_COUNT_END } // Computes the Otsu threshold(s) for the given histogram. // Also returns H = total count in histogram, and // omega0 = count of histogram below threshold. int OtsuStats(const int* histogram, int* H_out, int* omega0_out) { int H = 0; double mu_T = 0.0; for (int i = 0; i < kHistogramSize; ++i) { H += histogram[i]; mu_T += static_cast(i) * histogram[i]; } // Now maximize sig_sq_B over t. // http://www.ctie.monash.edu.au/hargreave/Cornall_Terry_328.pdf int best_t = -1; int omega_0, omega_1; int best_omega_0 = 0; double best_sig_sq_B = 0.0; double mu_0, mu_1, mu_t; omega_0 = 0; mu_t = 0.0; for (int t = 0; t < kHistogramSize - 1; ++t) { omega_0 += histogram[t]; mu_t += t * static_cast(histogram[t]); if (omega_0 == 0) continue; omega_1 = H - omega_0; if (omega_1 == 0) break; mu_0 = mu_t / omega_0; mu_1 = (mu_T - mu_t) / omega_1; double sig_sq_B = mu_1 - mu_0; sig_sq_B *= sig_sq_B * omega_0 * omega_1; if (best_t < 0 || sig_sq_B > best_sig_sq_B) { best_sig_sq_B = sig_sq_B; best_t = t; best_omega_0 = omega_0; } } if (H_out != nullptr) *H_out = H; if (omega0_out != nullptr) *omega0_out = best_omega_0; return best_t; } } // namespace tesseract.