// (C) Copyright 2017, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "include_gunit.h" #include "log.h" // for LOG #include "matrix.h" #include "normstrngs.h" #include "pageres.h" #include "ratngs.h" #include "recodebeam.h" #include "unicharcompress.h" #include "unicharset_training_utils.h" #include "helpers.h" #include "absl/strings/str_format.h" // for absl::StrFormat namespace tesseract { // Number of characters to test beam search with. const int kNumChars = 100; // Amount of extra random data to pad with after. const int kPadding = 64; // Dictionary test data. // The top choice is: "Gef s wordsright.". // The desired phrase is "Gets words right.". // There is a competing dictionary phrase: "Get swords right.". // ... due to the following errors from the network: // f stronger than t in "Get". // weak space between Gef and s and between s and words. // weak space between words and right. const char *kGWRTops[] = {"G", "e", "f", " ", "s", " ", "w", "o", "r", "d", "s", "", "r", "i", "g", "h", "t", ".", nullptr}; const float kGWRTopScores[] = {0.99, 0.85, 0.87, 0.55, 0.99, 0.65, 0.89, 0.99, 0.99, 0.99, 0.99, 0.95, 0.99, 0.90, 0.90, 0.90, 0.95, 0.75}; const char *kGWR2nds[] = {"C", "c", "t", "", "S", "", "W", "O", "t", "h", "S", " ", "t", "I", "9", "b", "f", ",", nullptr}; const float kGWR2ndScores[] = {0.01, 0.10, 0.12, 0.42, 0.01, 0.25, 0.10, 0.01, 0.01, 0.01, 0.01, 0.05, 0.01, 0.09, 0.09, 0.09, 0.05, 0.25}; const char *kZHTops[] = {"实", "学", "储", "啬", "投", "学", "生", nullptr}; const float kZHTopScores[] = {0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98}; const char *kZH2nds[] = {"学", "储", "投", "生", "学", "生", "实", nullptr}; const float kZH2ndScores[] = {0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01}; const char *kViTops[] = {"v", "ậ", "y", " ", "t", "ộ", "i", nullptr}; const float kViTopScores[] = {0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.97}; const char *kVi2nds[] = {"V", "a", "v", "", "l", "o", "", nullptr}; const float kVi2ndScores[] = {0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01}; class RecodeBeamTest : public ::testing::Test { protected: void SetUp() override { std::locale::global(std::locale("")); file::MakeTmpdir(); } RecodeBeamTest() : lstm_dict_(&ccutil_) {} ~RecodeBeamTest() override { lstm_dict_.End(); } // Loads and compresses the given unicharset. void LoadUnicharset(const std::string &unicharset_name) { std::string radical_stroke_file = file::JoinPath(LANGDATA_DIR, "radical-stroke.txt"); std::string unicharset_file = file::JoinPath(TESTDATA_DIR, unicharset_name); std::string radical_data; CHECK_OK(file::GetContents(radical_stroke_file, &radical_data, file::Defaults())); CHECK(ccutil_.unicharset.load_from_file(unicharset_file.c_str())); unichar_null_char_ = ccutil_.unicharset.has_special_codes() ? UNICHAR_BROKEN : ccutil_.unicharset.size(); std::string radical_str(radical_data.c_str()); EXPECT_TRUE(recoder_.ComputeEncoding(ccutil_.unicharset, unichar_null_char_, &radical_str)); RecodedCharID code; recoder_.EncodeUnichar(unichar_null_char_, &code); encoded_null_char_ = code(0); // Space should encode as itself. recoder_.EncodeUnichar(UNICHAR_SPACE, &code); EXPECT_EQ(UNICHAR_SPACE, code(0)); std::string output_name = file::JoinPath(FLAGS_test_tmpdir, "testenc.txt"); std::string encoding = recoder_.GetEncodingAsString(ccutil_.unicharset); std::string encoding_str(&encoding[0], encoding.size()); CHECK_OK(file::SetContents(output_name, encoding_str, file::Defaults())); LOG(INFO) << "Wrote encoding to:" << output_name << "\n"; } // Loads the dictionary. void LoadDict(const std::string &lang) { std::string traineddata_name = lang + ".traineddata"; std::string traineddata_file = file::JoinPath(TESTDATA_DIR, traineddata_name); lstm_dict_.SetupForLoad(nullptr); tesseract::TessdataManager mgr; mgr.Init(traineddata_file.c_str()); lstm_dict_.LoadLSTM(lang.c_str(), &mgr); lstm_dict_.FinishLoad(); } // Expects the appropriate results from the compressed_ ccutil_.unicharset. void ExpectCorrect(const GENERIC_2D_ARRAY &output, const std::vector &transcription) { // Get the utf8 string of the transcription. std::string truth_utf8; for (int i : transcription) { truth_utf8 += ccutil_.unicharset.id_to_unichar(i); } PointerVector words; ExpectCorrect(output, truth_utf8, nullptr, &words); } void ExpectCorrect(const GENERIC_2D_ARRAY &output, const std::string &truth_utf8, Dict *dict, PointerVector *words) { RecodeBeamSearch beam_search(recoder_, encoded_null_char_, false, dict); beam_search.Decode(output, 3.5, -0.125, -25.0, nullptr); // Uncomment and/or change nullptr above to &ccutil_.unicharset to debug: // beam_search.DebugBeams(ccutil_.unicharset); std::vector labels, xcoords; beam_search.ExtractBestPathAsLabels(&labels, &xcoords); LOG(INFO) << "Labels size = " << labels.size() << " coords " << xcoords.size() << "\n"; // Now decode using recoder_. std::string decoded; int end = 1; for (unsigned start = 0; start < labels.size(); start = end) { RecodedCharID code; unsigned index = start; int uni_id = INVALID_UNICHAR_ID; do { code.Set(code.length(), labels[index++]); uni_id = recoder_.DecodeUnichar(code); } while (index < labels.size() && code.length() < RecodedCharID::kMaxCodeLen && (uni_id == INVALID_UNICHAR_ID || !recoder_.IsValidFirstCode(labels[index]))); EXPECT_NE(INVALID_UNICHAR_ID, uni_id) << "index=" << index << "/" << labels.size(); // To the extent of truth_utf8, we expect decoded to match, but if // transcription is shorter, that is OK too, as we may just be testing // that we get a valid sequence when padded with random data. if (uni_id != unichar_null_char_ && decoded.size() < truth_utf8.size()) { decoded += ccutil_.unicharset.id_to_unichar(uni_id); } end = index; } EXPECT_EQ(truth_utf8, decoded); // Check that ExtractBestPathAsUnicharIds does the same thing. std::vector unichar_ids; std::vector certainties, ratings; beam_search.ExtractBestPathAsUnicharIds(false, &ccutil_.unicharset, &unichar_ids, &certainties, &ratings, &xcoords); std::string u_decoded; float total_rating = 0.0f; for (unsigned u = 0; u < unichar_ids.size(); ++u) { // To the extent of truth_utf8, we expect decoded to match, but if // transcription is shorter, that is OK too, as we may just be testing // that we get a valid sequence when padded with random data. if (u_decoded.size() < truth_utf8.size()) { const char *str = ccutil_.unicharset.id_to_unichar(unichar_ids[u]); total_rating += ratings[u]; LOG(INFO) << absl::StrFormat("%d:u_id=%d=%s, c=%g, r=%g, r_sum=%g @%d", u, unichar_ids[u], str, certainties[u], ratings[u], total_rating, xcoords[u]) << "\n"; if (str[0] == ' ') { total_rating = 0.0f; } u_decoded += str; } } EXPECT_EQ(truth_utf8, u_decoded); // Check that ExtractBestPathAsWords does the same thing. TBOX line_box(0, 0, 100, 10); for (int i = 0; i < 2; ++i) { beam_search.ExtractBestPathAsWords(line_box, 1.0f, false, &ccutil_.unicharset, words); std::string w_decoded; for (int w = 0; w < words->size(); ++w) { const WERD_RES *word = (*words)[w]; if (w_decoded.size() < truth_utf8.size()) { if (!w_decoded.empty() && word->word->space()) { w_decoded += " "; } w_decoded += word->best_choice->unichar_string().c_str(); } LOG(INFO) << absl::StrFormat("Word:%d = %s, c=%g, r=%g, perm=%d", w, word->best_choice->unichar_string().c_str(), word->best_choice->certainty(), word->best_choice->rating(), word->best_choice->permuter()) << "\n"; } std::string w_trunc(w_decoded.data(), truth_utf8.size()); if (truth_utf8 != w_trunc) { tesseract::NormalizeUTF8String( tesseract::UnicodeNormMode::kNFKD, tesseract::OCRNorm::kNormalize, tesseract::GraphemeNorm::kNone, w_decoded.c_str(), &w_decoded); w_trunc.assign(w_decoded.data(), truth_utf8.size()); } EXPECT_EQ(truth_utf8, w_trunc); } } // Generates easy encoding of the given unichar_ids, and pads with at least // padding of random data. GENERIC_2D_ARRAY GenerateRandomPaddedOutputs(const std::vector &unichar_ids, int padding) { int width = unichar_ids.size() * 2 * RecodedCharID::kMaxCodeLen; int num_codes = recoder_.code_range(); GENERIC_2D_ARRAY outputs(width + padding, num_codes, 0.0f); // Fill with random data. TRand random; for (int t = 0; t < width; ++t) { for (int i = 0; i < num_codes; ++i) { outputs(t, i) = random.UnsignedRand(0.25); } } int t = 0; for (int unichar_id : unichar_ids) { RecodedCharID code; int len = recoder_.EncodeUnichar(unichar_id, &code); EXPECT_NE(0, len); for (int j = 0; j < len; ++j) { // Make the desired answer a clear winner. if (j > 0 && code(j) == code(j - 1)) { // We will collapse adjacent equal codes so put a null in between. outputs(t++, encoded_null_char_) = 1.0f; } outputs(t++, code(j)) = 1.0f; } // Put a 0 as a null char in between. outputs(t++, encoded_null_char_) = 1.0f; } // Normalize the probs. for (int t = 0; t < width; ++t) { double sum = 0.0; for (int i = 0; i < num_codes; ++i) { sum += outputs(t, i); } for (int i = 0; i < num_codes; ++i) { outputs(t, i) /= sum; } } return outputs; } // Encodes a utf8 string (character) as unichar_id, then recodes, and sets // the score for the appropriate sequence of codes, returning the ending t. int EncodeUTF8(const char *utf8_str, float score, int start_t, TRand *random, GENERIC_2D_ARRAY *outputs) { int t = start_t; std::vector unichar_ids; EXPECT_TRUE(ccutil_.unicharset.encode_string(utf8_str, true, &unichar_ids, nullptr, nullptr)); if (unichar_ids.empty() || utf8_str[0] == '\0') { unichar_ids.clear(); unichar_ids.push_back(unichar_null_char_); } int num_ids = unichar_ids.size(); for (int u = 0; u < num_ids; ++u) { RecodedCharID code; int len = recoder_.EncodeUnichar(unichar_ids[u], &code); EXPECT_NE(0, len); for (int i = 0; i < len; ++i) { // Apply the desired score. (*outputs)(t++, code(i)) = score; if (random != nullptr && t + (num_ids - u) * RecodedCharID::kMaxCodeLen < outputs->dim1()) { int dups = static_cast(random->UnsignedRand(3.0)); for (int d = 0; d < dups; ++d) { // Duplicate the desired score. (*outputs)(t++, code(i)) = score; } } } if (random != nullptr && t + (num_ids - u) * RecodedCharID::kMaxCodeLen < outputs->dim1()) { int dups = static_cast(random->UnsignedRand(3.0)); for (int d = 0; d < dups; ++d) { // Add a random number of nulls as well. (*outputs)(t++, encoded_null_char_) = score; } } } return t; } // Generates an encoding of the given 4 arrays as synthetic network scores. // uses scores1 for chars1 and scores2 for chars2, and everything else gets // the leftovers shared out equally. Note that empty string encodes as the // null_char_. GENERIC_2D_ARRAY GenerateSyntheticOutputs(const char *chars1[], const float scores1[], const char *chars2[], const float scores2[], TRand *random) { int width = 0; while (chars1[width] != nullptr) { ++width; } int padding = width * RecodedCharID::kMaxCodeLen; int num_codes = recoder_.code_range(); GENERIC_2D_ARRAY outputs(width + padding, num_codes, 0.0f); int t = 0; for (int i = 0; i < width; ++i) { // In case there is overlap in the codes between 1st and 2nd choice, it // is better to encode the 2nd choice first. int end_t2 = EncodeUTF8(chars2[i], scores2[i], t, random, &outputs); int end_t1 = EncodeUTF8(chars1[i], scores1[i], t, random, &outputs); // Advance t to the max end, setting everything else to the leftovers. int max_t = std::max(end_t1, end_t2); while (t < max_t) { double total_score = 0.0; for (int j = 0; j < num_codes; ++j) { total_score += outputs(t, j); } double null_remainder = (1.0 - total_score) / 2.0; double remainder = null_remainder / (num_codes - 2); if (outputs(t, encoded_null_char_) < null_remainder) { outputs(t, encoded_null_char_) += null_remainder; } else { remainder += remainder; } for (int j = 0; j < num_codes; ++j) { if (outputs(t, j) == 0.0f) { outputs(t, j) = remainder; } } ++t; } } // Fill the rest with null chars. while (t < width + padding) { outputs(t++, encoded_null_char_) = 1.0f; } return outputs; } UnicharCompress recoder_; int unichar_null_char_ = 0; int encoded_null_char_ = 0; CCUtil ccutil_; Dict lstm_dict_; }; TEST_F(RecodeBeamTest, DoesChinese) { LOG(INFO) << "Testing chi_tra" << "\n"; LoadUnicharset("chi_tra.unicharset"); // Correctly reproduce the first kNumchars characters from easy output. std::vector transcription; for (int i = SPECIAL_UNICHAR_CODES_COUNT; i < kNumChars; ++i) { transcription.push_back(i); } GENERIC_2D_ARRAY outputs = GenerateRandomPaddedOutputs(transcription, kPadding); ExpectCorrect(outputs, transcription); LOG(INFO) << "Testing chi_sim" << "\n"; LoadUnicharset("chi_sim.unicharset"); // Correctly reproduce the first kNumchars characters from easy output. transcription.clear(); for (int i = SPECIAL_UNICHAR_CODES_COUNT; i < kNumChars; ++i) { transcription.push_back(i); } outputs = GenerateRandomPaddedOutputs(transcription, kPadding); ExpectCorrect(outputs, transcription); } TEST_F(RecodeBeamTest, DoesJapanese) { LOG(INFO) << "Testing jpn" << "\n"; LoadUnicharset("jpn.unicharset"); // Correctly reproduce the first kNumchars characters from easy output. std::vector transcription; for (int i = SPECIAL_UNICHAR_CODES_COUNT; i < kNumChars; ++i) { transcription.push_back(i); } GENERIC_2D_ARRAY outputs = GenerateRandomPaddedOutputs(transcription, kPadding); ExpectCorrect(outputs, transcription); } TEST_F(RecodeBeamTest, DoesKorean) { LOG(INFO) << "Testing kor" << "\n"; LoadUnicharset("kor.unicharset"); // Correctly reproduce the first kNumchars characters from easy output. std::vector transcription; for (int i = SPECIAL_UNICHAR_CODES_COUNT; i < kNumChars; ++i) { transcription.push_back(i); } GENERIC_2D_ARRAY outputs = GenerateRandomPaddedOutputs(transcription, kPadding); ExpectCorrect(outputs, transcription); } TEST_F(RecodeBeamTest, DoesKannada) { LOG(INFO) << "Testing kan" << "\n"; LoadUnicharset("kan.unicharset"); // Correctly reproduce the first kNumchars characters from easy output. std::vector transcription; for (int i = SPECIAL_UNICHAR_CODES_COUNT; i < kNumChars; ++i) { transcription.push_back(i); } GENERIC_2D_ARRAY outputs = GenerateRandomPaddedOutputs(transcription, kPadding); ExpectCorrect(outputs, transcription); } TEST_F(RecodeBeamTest, DoesMarathi) { LOG(INFO) << "Testing mar" << "\n"; LoadUnicharset("mar.unicharset"); // Correctly reproduce the first kNumchars characters from easy output. std::vector transcription; for (int i = SPECIAL_UNICHAR_CODES_COUNT; i < kNumChars; ++i) { transcription.push_back(i); } GENERIC_2D_ARRAY outputs = GenerateRandomPaddedOutputs(transcription, kPadding); ExpectCorrect(outputs, transcription); } TEST_F(RecodeBeamTest, DoesEnglish) { LOG(INFO) << "Testing eng" << "\n"; LoadUnicharset("eng.unicharset"); // Correctly reproduce the first kNumchars characters from easy output. std::vector transcription; for (int i = SPECIAL_UNICHAR_CODES_COUNT; i < kNumChars; ++i) { transcription.push_back(i); } GENERIC_2D_ARRAY outputs = GenerateRandomPaddedOutputs(transcription, kPadding); ExpectCorrect(outputs, transcription); } TEST_F(RecodeBeamTest, DISABLED_EngDictionary) { LOG(INFO) << "Testing eng dictionary" << "\n"; LoadUnicharset("eng_beam.unicharset"); GENERIC_2D_ARRAY outputs = GenerateSyntheticOutputs(kGWRTops, kGWRTopScores, kGWR2nds, kGWR2ndScores, nullptr); std::string default_str; for (int i = 0; kGWRTops[i] != nullptr; ++i) { default_str += kGWRTops[i]; } PointerVector words; ExpectCorrect(outputs, default_str, nullptr, &words); // Now try again with the dictionary. LoadDict("eng_beam"); ExpectCorrect(outputs, "Gets words right.", &lstm_dict_, &words); } TEST_F(RecodeBeamTest, DISABLED_ChiDictionary) { LOG(INFO) << "Testing zh_hans dictionary" << "\n"; LoadUnicharset("zh_hans.unicharset"); GENERIC_2D_ARRAY outputs = GenerateSyntheticOutputs(kZHTops, kZHTopScores, kZH2nds, kZH2ndScores, nullptr); PointerVector words; ExpectCorrect(outputs, "实学储啬投学生", nullptr, &words); // Each is an individual word, with permuter = top choice. EXPECT_EQ(7, words.size()); for (int w = 0; w < words.size(); ++w) { EXPECT_EQ(TOP_CHOICE_PERM, words[w]->best_choice->permuter()); } // Now try again with the dictionary. LoadDict("zh_hans"); ExpectCorrect(outputs, "实学储啬投学生", &lstm_dict_, &words); // Number of words expected. const int kNumWords = 5; // Content of the words. const char *kWords[kNumWords] = {"实学", "储", "啬", "投", "学生"}; // Permuters of the words. const int kWordPerms[kNumWords] = {SYSTEM_DAWG_PERM, TOP_CHOICE_PERM, TOP_CHOICE_PERM, TOP_CHOICE_PERM, SYSTEM_DAWG_PERM}; EXPECT_EQ(kNumWords, words.size()); for (int w = 0; w < kNumWords && w < words.size(); ++w) { EXPECT_STREQ(kWords[w], words[w]->best_choice->unichar_string().c_str()); EXPECT_EQ(kWordPerms[w], words[w]->best_choice->permuter()); } } // Tests that a recoder built with decomposed unicode allows true ctc // arbitrary duplicates and inserted nulls inside the multicode sequence. TEST_F(RecodeBeamTest, DISABLED_MultiCodeSequences) { LOG(INFO) << "Testing duplicates in multi-code sequences" << "\n"; LoadUnicharset("vie.d.unicharset"); tesseract::SetupBasicProperties(false, true, &ccutil_.unicharset); TRand random; GENERIC_2D_ARRAY outputs = GenerateSyntheticOutputs(kViTops, kViTopScores, kVi2nds, kVi2ndScores, &random); PointerVector words; std::string truth_str; tesseract::NormalizeUTF8String(tesseract::UnicodeNormMode::kNFKC, tesseract::OCRNorm::kNormalize, tesseract::GraphemeNorm::kNone, "vậy tội", &truth_str); ExpectCorrect(outputs, truth_str, nullptr, &words); } } // namespace tesseract