/////////////////////////////////////////////////////////////////////// // File: weightmatrix.cpp // Description: Hides distinction between float/int implementations. // Author: Ray Smith // Created: Tue Jun 17 11:46:20 PST 2014 // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "weightmatrix.h" #include "dotproductavx.h" #include "dotproductsse.h" #include "intsimdmatrix.h" #include "simddetect.h" #include "statistc.h" #include "tprintf.h" namespace tesseract { #if (defined(_MSC_VER) && _MSC_VER < 1900) || defined(ANDROID) static inline double log2(double n) { return log(n) / log(2.0); } #endif // _MSC_VER // Number of iterations after which the correction effectively becomes unity. const int kAdamCorrectionIterations = 200000; // Epsilon in Adam to prevent division by zero. const double kAdamEpsilon = 1e-8; // Copies the whole input transposed, converted to double, into *this. void TransposedArray::Transpose(const GENERIC_2D_ARRAY& input) { int width = input.dim1(); int num_features = input.dim2(); ResizeNoInit(num_features, width); for (int t = 0; t < width; ++t) WriteStrided(t, input[t]); } // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. int WeightMatrix::InitWeightsFloat(int no, int ni, bool use_adam, float weight_range, TRand* randomizer) { int_mode_ = false; wf_.Resize(no, ni, 0.0); if (randomizer != nullptr) { for (int i = 0; i < no; ++i) { for (int j = 0; j < ni; ++j) { wf_[i][j] = randomizer->SignedRand(weight_range); } } } use_adam_ = use_adam; InitBackward(); return ni * no; } // Changes the number of outputs to the size of the given code_map, copying // the old weight matrix entries for each output from code_map[output] where // non-negative, and uses the mean (over all outputs) of the existing weights // for all outputs with negative code_map entries. Returns the new number of // weights. int WeightMatrix::RemapOutputs(const std::vector& code_map) { GENERIC_2D_ARRAY old_wf(wf_); int old_no = wf_.dim1(); int new_no = code_map.size(); int ni = wf_.dim2(); std::vector means(ni, 0.0); for (int c = 0; c < old_no; ++c) { const double* weights = wf_[c]; for (int i = 0; i < ni; ++i) means[i] += weights[i]; } for (double& mean : means) mean /= old_no; wf_.ResizeNoInit(new_no, ni); InitBackward(); for (int dest = 0; dest < new_no; ++dest) { int src = code_map[dest]; const double* src_data = src >= 0 ? old_wf[src] : means.data(); memcpy(wf_[dest], src_data, ni * sizeof(*src_data)); } return ni * new_no; } // Converts a float network to an int network. Each set of input weights that // corresponds to a single output weight is converted independently: // Compute the max absolute value of the weight set. // Scale so the max absolute value becomes INT8_MAX. // Round to integer. // Store a multiplicative scale factor (as a double) that will reproduce // the original value, subject to rounding errors. void WeightMatrix::ConvertToInt() { wi_.ResizeNoInit(wf_.dim1(), wf_.dim2()); scales_.init_to_size(wi_.dim1(), 0.0); int dim2 = wi_.dim2(); for (int t = 0; t < wi_.dim1(); ++t) { double* f_line = wf_[t]; int8_t* i_line = wi_[t]; double max_abs = 0.0; for (int f = 0; f < dim2; ++f) { double abs_val = fabs(f_line[f]); if (abs_val > max_abs) max_abs = abs_val; } double scale = max_abs / INT8_MAX; scales_[t] = scale; if (scale == 0.0) scale = 1.0; for (int f = 0; f < dim2; ++f) { i_line[f] = IntCastRounded(f_line[f] / scale); } } wf_.Resize(1, 1, 0.0); int_mode_ = true; multiplier_.reset(IntSimdMatrix::GetFastestMultiplier()); if (multiplier_ != nullptr) multiplier_->Init(wi_); } // Allocates any needed memory for running Backward, and zeroes the deltas, // thus eliminating any existing momentum. void WeightMatrix::InitBackward() { int no = int_mode_ ? wi_.dim1() : wf_.dim1(); int ni = int_mode_ ? wi_.dim2() : wf_.dim2(); dw_.Resize(no, ni, 0.0); updates_.Resize(no, ni, 0.0); wf_t_.Transpose(wf_); if (use_adam_) dw_sq_sum_.Resize(no, ni, 0.0); } // Flag on mode to indicate that this weightmatrix uses int8_t. const int kInt8Flag = 1; // Flag on mode to indicate that this weightmatrix uses adam. const int kAdamFlag = 4; // Flag on mode to indicate that this weightmatrix uses double. Set // independently of kInt8Flag as even in int mode the scales can // be float or double. const int kDoubleFlag = 128; // Writes to the given file. Returns false in case of error. bool WeightMatrix::Serialize(bool training, TFile* fp) const { // For backward compatibility, add kDoubleFlag to mode to indicate the doubles // format, without errs, so we can detect and read old format weight matrices. uint8_t mode = (int_mode_ ? kInt8Flag : 0) | (use_adam_ ? kAdamFlag : 0) | kDoubleFlag; if (fp->FWrite(&mode, sizeof(mode), 1) != 1) return false; if (int_mode_) { if (!wi_.Serialize(fp)) return false; if (!scales_.Serialize(fp)) return false; } else { if (!wf_.Serialize(fp)) return false; if (training && !updates_.Serialize(fp)) return false; if (training && use_adam_ && !dw_sq_sum_.Serialize(fp)) return false; } return true; } // Reads from the given file. Returns false in case of error. bool WeightMatrix::DeSerialize(bool training, TFile* fp) { uint8_t mode = 0; if (fp->FRead(&mode, sizeof(mode), 1) != 1) return false; int_mode_ = (mode & kInt8Flag) != 0; use_adam_ = (mode & kAdamFlag) != 0; if ((mode & kDoubleFlag) == 0) return DeSerializeOld(training, fp); if (int_mode_) { if (!wi_.DeSerialize(fp)) return false; if (!scales_.DeSerialize(fp)) return false; multiplier_.reset(IntSimdMatrix::GetFastestMultiplier()); if (multiplier_ != nullptr) multiplier_->Init(wi_); } else { if (!wf_.DeSerialize(fp)) return false; if (training) { InitBackward(); if (!updates_.DeSerialize(fp)) return false; if (use_adam_ && !dw_sq_sum_.DeSerialize(fp)) return false; } } return true; } // As DeSerialize, but reads an old (float) format WeightMatrix for // backward compatibility. bool WeightMatrix::DeSerializeOld(bool training, TFile* fp) { GENERIC_2D_ARRAY float_array; if (int_mode_) { if (!wi_.DeSerialize(fp)) return false; GenericVector old_scales; if (!old_scales.DeSerialize(fp)) return false; scales_.resize_no_init(old_scales.size()); for (int i = 0; i < old_scales.size(); ++i) scales_[i] = old_scales[i]; } else { if (!float_array.DeSerialize(fp)) return false; FloatToDouble(float_array, &wf_); } if (training) { InitBackward(); if (!float_array.DeSerialize(fp)) return false; FloatToDouble(float_array, &updates_); // Errs was only used in int training, which is now dead. if (!float_array.DeSerialize(fp)) return false; } return true; } // Computes matrix.vector v = Wu. // u is of size W.dim2() - 1 and the output v is of size W.dim1(). // u is imagined to have an extra element at the end with value 1, to // implement the bias, but it doesn't actually have it. // Asserts that the call matches what we have. void WeightMatrix::MatrixDotVector(const double* u, double* v) const { ASSERT_HOST(!int_mode_); MatrixDotVectorInternal(wf_, true, false, u, v); } void WeightMatrix::MatrixDotVector(const int8_t* u, double* v) const { ASSERT_HOST(int_mode_); ASSERT_HOST(multiplier_ != nullptr); multiplier_->MatrixDotVector(wi_, scales_, u, v); } // MatrixDotVector for peep weights, MultiplyAccumulate adds the // component-wise products of *this[0] and v to inout. void WeightMatrix::MultiplyAccumulate(const double* v, double* inout) { ASSERT_HOST(!int_mode_); ASSERT_HOST(wf_.dim1() == 1); int n = wf_.dim2(); const double* u = wf_[0]; for (int i = 0; i < n; ++i) { inout[i] += u[i] * v[i]; } } // Computes vector.matrix v = uW. // u is of size W.dim1() and the output v is of size W.dim2() - 1. // The last result is discarded, as v is assumed to have an imaginary // last value of 1, as with MatrixDotVector. void WeightMatrix::VectorDotMatrix(const double* u, double* v) const { ASSERT_HOST(!int_mode_); MatrixDotVectorInternal(wf_t_, false, true, u, v); } // Fills dw_[i][j] with the dot product u[i][] . v[j][], using elements from // u and v. In terms of the neural network, u is the gradients and v is the // inputs. // Note that (matching MatrixDotVector) v[last][] is missing, presumed 1.0. // Runs parallel if requested. Note that u and v must be transposed. void WeightMatrix::SumOuterTransposed(const TransposedArray& u, const TransposedArray& v, bool in_parallel) { ASSERT_HOST(!int_mode_); int num_outputs = dw_.dim1(); ASSERT_HOST(u.dim1() == num_outputs); ASSERT_HOST(u.dim2() == v.dim2()); int num_inputs = dw_.dim2() - 1; int num_samples = u.dim2(); // v is missing the last element in dim1. ASSERT_HOST(v.dim1() == num_inputs); #ifdef _OPENMP #pragma omp parallel for num_threads(4) if (in_parallel) #endif for (int i = 0; i < num_outputs; ++i) { double* dwi = dw_[i]; const double* ui = u[i]; for (int j = 0; j < num_inputs; ++j) { dwi[j] = DotProduct(ui, v[j], num_samples); } // The last element of v is missing, presumed 1.0f. double total = 0.0; for (int k = 0; k < num_samples; ++k) total += ui[k]; dwi[num_inputs] = total; } } // Updates the weights using the given learning rate and momentum. // num_samples is the quotient to be used in the adam computation iff // use_adam_ is true. void WeightMatrix::Update(double learning_rate, double momentum, double adam_beta, int num_samples) { ASSERT_HOST(!int_mode_); if (use_adam_ && num_samples > 0 && num_samples < kAdamCorrectionIterations) { learning_rate *= sqrt(1.0 - pow(adam_beta, num_samples)); learning_rate /= 1.0 - pow(momentum, num_samples); } if (use_adam_ && num_samples > 0 && momentum > 0.0) { dw_sq_sum_.SumSquares(dw_, adam_beta); dw_ *= learning_rate * (1.0 - momentum); updates_ *= momentum; updates_ += dw_; wf_.AdamUpdate(updates_, dw_sq_sum_, learning_rate * kAdamEpsilon); } else { dw_ *= learning_rate; updates_ += dw_; if (momentum > 0.0) wf_ += updates_; if (momentum >= 0.0) updates_ *= momentum; } wf_t_.Transpose(wf_); } // Adds the dw_ in other to the dw_ is *this. void WeightMatrix::AddDeltas(const WeightMatrix& other) { ASSERT_HOST(dw_.dim1() == other.dw_.dim1()); ASSERT_HOST(dw_.dim2() == other.dw_.dim2()); dw_ += other.dw_; } // Sums the products of weight updates in *this and other, splitting into // positive (same direction) in *same and negative (different direction) in // *changed. void WeightMatrix::CountAlternators(const WeightMatrix& other, double* same, double* changed) const { int num_outputs = updates_.dim1(); int num_inputs = updates_.dim2(); ASSERT_HOST(num_outputs == other.updates_.dim1()); ASSERT_HOST(num_inputs == other.updates_.dim2()); for (int i = 0; i < num_outputs; ++i) { const double* this_i = updates_[i]; const double* other_i = other.updates_[i]; for (int j = 0; j < num_inputs; ++j) { double product = this_i[j] * other_i[j]; if (product < 0.0) *changed -= product; else *same += product; } } } // Helper computes an integer histogram bucket for a weight and adds it // to the histogram. const int kHistogramBuckets = 16; static void HistogramWeight(double weight, STATS* histogram) { int bucket = kHistogramBuckets - 1; if (weight != 0.0) { double logval = -log2(fabs(weight)); bucket = ClipToRange(IntCastRounded(logval), 0, kHistogramBuckets - 1); } histogram->add(bucket, 1); } void WeightMatrix::Debug2D(const char* msg) { STATS histogram(0, kHistogramBuckets); if (int_mode_) { for (int i = 0; i < wi_.dim1(); ++i) { for (int j = 0; j < wi_.dim2(); ++j) { HistogramWeight(wi_[i][j] * scales_[i], &histogram); } } } else { for (int i = 0; i < wf_.dim1(); ++i) { for (int j = 0; j < wf_.dim2(); ++j) { HistogramWeight(wf_[i][j], &histogram); } } } tprintf("%s\n", msg); histogram.print(); } // Computes and returns the dot product of the two n-vectors u and v. /* static */ double WeightMatrix::DotProduct(const double* u, const double* v, int n) { // Note: because the order of addition is different among the 3 DotProduct // functions, the results can (and do) vary slightly (although they agree // to within about 4e-15). This produces different results when running // training, despite all random inputs being precisely equal. // To get consistent results, use just one of these DotProduct functions. // On a test multi-layer network, serial is 57% slower than sse, and avx // is about 8% faster than sse. This suggests that the time is memory // bandwidth constrained and could benefit from holding the reused vector // in AVX registers. if (SIMDDetect::IsAVXAvailable()) return DotProductAVX(u, v, n); if (SIMDDetect::IsSSEAvailable()) return DotProductSSE(u, v, n); double total = 0.0; for (int k = 0; k < n; ++k) total += u[k] * v[k]; return total; } // Utility function converts an array of float to the corresponding array // of double. /* static */ void WeightMatrix::FloatToDouble(const GENERIC_2D_ARRAY& wf, GENERIC_2D_ARRAY* wd) { int dim1 = wf.dim1(); int dim2 = wf.dim2(); wd->ResizeNoInit(dim1, dim2); for (int i = 0; i < dim1; ++i) { const float* wfi = wf[i]; double* wdi = (*wd)[i]; for (int j = 0; j < dim2; ++j) wdi[j] = static_cast(wfi[j]); } } // Computes matrix.vector v = Wu. // u is of size W.dim2() - add_bias_fwd and the output v is of size // W.dim1() - skip_bias_back. // If add_bias_fwd, u is imagined to have an extra element at the end with value // 1, to implement the bias, weight. // If skip_bias_back, we are actullay performing the backwards product on a // transposed matrix, so we need to drop the v output corresponding to the last // element in dim1. void WeightMatrix::MatrixDotVectorInternal(const GENERIC_2D_ARRAY& w, bool add_bias_fwd, bool skip_bias_back, const double* u, double* v) { int num_results = w.dim1() - skip_bias_back; int extent = w.dim2() - add_bias_fwd; for (int i = 0; i < num_results; ++i) { const double* wi = w[i]; double total = DotProduct(wi, u, extent); if (add_bias_fwd) total += wi[extent]; // The bias value. v[i] = total; } } } // namespace tesseract.