#!/bin/bash # (C) Copyright 2014, Google Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This script provides an easy way to execute various phases of training # Tesseract. For a detailed description of the phases, see # https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract # # USAGE: # # tesstrain.sh # --fontlist FONTS_STR # A plus-separated list of fontnames to train on. # --fonts_dir FONTS_PATH # Path to font files. # --lang LANG_CODE # ISO 639 code. # --langdata_dir DATADIR # Path to tesseract/training/langdata directory. # --output_dir OUTPUTDIR # Location of output traineddata file. # --overwrite # Safe to overwrite files in output_dir. # --run_shape_clustering # Run shape clustering (use for Indic langs). # # OPTIONAL flags for input data. If unspecified we will look for them in # the langdata_dir directory. # --training_text TEXTFILE # Text to render and use for training. # --wordlist WORDFILE # Word list for the language ordered by # # decreasing frequency. # # OPTIONAL flag to specify location of existing traineddata files, required # during feature extraction. If unspecified will use TESSDATA_PREFIX defined in # the current environment. # --tessdata_dir TESSDATADIR # Path to tesseract/tessdata directory. # # NOTE: # The font names specified in --fontlist need to be recognizable by Pango using # fontconfig. An easy way to list the canonical names of all fonts available on # your system is to run text2image with --list_available_fonts and the # appropriate --fonts_dir path. source `dirname $0`/tesstrain_utils.sh ARGV=("$@") parse_flags tlog "\n=== Starting training for language '${LANG_CODE}'" tlog "Cleaning workspace directory ${TRAINING_DIR}..." mkdir -p ${TRAINING_DIR} rm -fr ${TRAINING_DIR}/* source `dirname $0`/language-specific.sh set_lang_specific_parameters ${LANG_CODE} initialize_fontconfig phase_I_generate_image 8 phase_UP_generate_unicharset phase_D_generate_dawg phase_E_extract_features "box.train" 8 phase_C_cluster_prototypes "${TRAINING_DIR}/${LANG_CODE}.normproto" if [[ "${ENABLE_SHAPE_CLUSTERING}" == "y" ]]; then phase_S_cluster_shapes fi phase_M_cluster_microfeatures phase_B_generate_ambiguities make__traineddata tlog "\nCompleted training for language '${LANG_CODE}'\n"