// Copyright 2008 Google Inc. All Rights Reserved. // Author: scharron@google.com (Samuel Charron) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "commontraining.h" #include "oldlist.h" #include "globals.h" #include "mf.h" #include "clusttool.h" #include "cluster.h" #include "mergenf.h" #include "tessopt.h" #include "featdefs.h" #include "efio.h" #include "emalloc.h" #include "tprintf.h" #include "freelist.h" #include "unicity_table.h" #include #define round(x,frag)(floor(x/frag+.5)*frag) // Global Variables. char *Directory = NULL; const char *InputUnicharsetFile = NULL; const char *OutputUnicharsetFile = NULL; const char *InputFontInfoFile = NULL; FLOAT32 RoundingAccuracy = 0.0f; char CTFontName[MAXNAMESIZE]; const char* test_ch = ""; /*---------------------------------------------------------------------------*/ void ParseArguments(int argc, char **argv) { /* ** Parameters: ** argc number of command line arguments to parse ** argv command line arguments ** Globals: ** ShowSignificantProtos flag controlling proto display ** ShowInsignificantProtos flag controlling proto display ** Config current clustering parameters ** tessoptarg, tessoptind defined by tessopt sys call ** Argc, Argv global copies of argc and argv ** Operation: ** This routine parses the command line arguments that were ** passed to the program. The legal arguments are: ** -d "turn off display of samples" ** -S [ spherical | elliptical | mixed | automatic ] ** -M MinSamples "min samples per prototype (%)" ** -B MaxIllegal "max illegal chars per cluster (%)" ** -I Independence "0 to 1" ** -C Confidence "1e-200 to 1.0" ** -D Directory ** -R RoundingAccuracy ** -U InputUnicharsetFile ** -O OutputUnicharsetFile ** Return: none ** Exceptions: Illegal options terminate the program. ** History: 7/24/89, DSJ, Created. */ int Option; int ParametersRead; BOOL8 Error; Error = FALSE; while ((Option = tessopt(argc, argv, "F:O:U:R:D:C:I:M:B:S")) != EOF) { switch (Option) { case 'C': ParametersRead = sscanf( tessoptarg, "%lf", &(Config.Confidence) ); if ( ParametersRead != 1 ) Error = TRUE; else if ( Config.Confidence > 1 ) Config.Confidence = 1; else if ( Config.Confidence < 0 ) Config.Confidence = 0; break; case 'I': ParametersRead = sscanf( tessoptarg, "%f", &(Config.Independence) ); if ( ParametersRead != 1 ) Error = TRUE; else if ( Config.Independence > 1 ) Config.Independence = 1; else if ( Config.Independence < 0 ) Config.Independence = 0; break; case 'M': ParametersRead = sscanf( tessoptarg, "%f", &(Config.MinSamples) ); if ( ParametersRead != 1 ) Error = TRUE; else if ( Config.MinSamples > 1 ) Config.MinSamples = 1; else if ( Config.MinSamples < 0 ) Config.MinSamples = 0; break; case 'B': ParametersRead = sscanf( tessoptarg, "%f", &(Config.MaxIllegal) ); if ( ParametersRead != 1 ) Error = TRUE; else if ( Config.MaxIllegal > 1 ) Config.MaxIllegal = 1; else if ( Config.MaxIllegal < 0 ) Config.MaxIllegal = 0; break; case 'R': ParametersRead = sscanf( tessoptarg, "%f", &RoundingAccuracy ); if ( ParametersRead != 1 ) Error = TRUE; else if ( RoundingAccuracy > 0.01f ) RoundingAccuracy = 0.01f; else if ( RoundingAccuracy < 0.0f ) RoundingAccuracy = 0.0f; break; case 'S': switch ( tessoptarg[0] ) { case 's': Config.ProtoStyle = spherical; break; case 'e': Config.ProtoStyle = elliptical; break; case 'm': Config.ProtoStyle = mixed; break; case 'a': Config.ProtoStyle = automatic; break; default: Error = TRUE; } break; case 'D': Directory = tessoptarg; break; case 'U': InputUnicharsetFile = tessoptarg; break; case 'O': OutputUnicharsetFile = tessoptarg; break; case 'F': InputFontInfoFile = tessoptarg; break; case '?': Error = TRUE; break; } if ( Error ) { fprintf (stderr, "usage: %s [-d] [-p] [-n]\n", argv[0] ); fprintf (stderr, "\t[-S ProtoStyle]\n"); fprintf (stderr, "\t[-M MinSamples] [-B MaxBad] [-I Independence]\n"); fprintf (stderr, "\t[-C Confidence] [-D Directory]\n"); fprintf (stderr, "\t[-U InputUnicharsetFile] [-O OutputUnicharsetFile]\n"); fprintf (stderr, "\t[-F FontInfoFile]\n"); fprintf (stderr, "\t[ TrainingPage ... ]\n"); exit (2); } } } // ParseArguments /*---------------------------------------------------------------------------*/ char *GetNextFilename (int Argc, char** Argv) /* ** Parameters: none ** Globals: ** tessoptind defined by tessopt sys call ** Operation: ** This routine returns the next command line argument. If ** there are no remaining command line arguments, it returns ** NULL. This routine should only be called after all option ** arguments have been parsed and removed with ParseArguments. ** Return: Next command line argument or NULL. ** Exceptions: none ** History: Fri Aug 18 09:34:12 1989, DSJ, Created. */ { if (tessoptind < Argc) return (Argv [tessoptind++]); else return (NULL); } /* GetNextFilename */ /*---------------------------------------------------------------------------*/ LABELEDLIST FindList ( LIST List, char *Label) /* ** Parameters: ** List list to search ** Label label to search for ** Globals: none ** Operation: ** This routine searches thru a list of labeled lists to find ** a list with the specified label. If a matching labeled list ** cannot be found, NULL is returned. ** Return: Labeled list with the specified Label or NULL. ** Exceptions: none ** History: Fri Aug 18 15:57:41 1989, DSJ, Created. */ { LABELEDLIST LabeledList; iterate (List) { LabeledList = (LABELEDLIST) first_node (List); if (strcmp (LabeledList->Label, Label) == 0) return (LabeledList); } return (NULL); } /* FindList */ /*---------------------------------------------------------------------------*/ LABELEDLIST NewLabeledList ( const char *Label) /* ** Parameters: ** Label label for new list ** Globals: none ** Operation: ** This routine allocates a new, empty labeled list and gives ** it the specified label. ** Return: New, empty labeled list. ** Exceptions: none ** History: Fri Aug 18 16:08:46 1989, DSJ, Created. */ { LABELEDLIST LabeledList; LabeledList = (LABELEDLIST) Emalloc (sizeof (LABELEDLISTNODE)); LabeledList->Label = (char*)Emalloc (strlen (Label)+1); strcpy (LabeledList->Label, Label); LabeledList->List = NIL_LIST; LabeledList->SampleCount = 0; LabeledList->font_sample_count = 0; return (LabeledList); } /* NewLabeledList */ /*---------------------------------------------------------------------------*/ void ReadTrainingSamples(const FEATURE_DEFS_STRUCT& feature_defs, const char *feature_name, int max_samples, float linear_spread, float circular_spread, UNICHARSET* unicharset, FILE* file, LIST* training_samples) { /* ** Parameters: ** file open text file to read samples from ** Globals: none ** Operation: ** This routine reads training samples from a file and ** places them into a data structure which organizes the ** samples by FontName and CharName. It then returns this ** data structure. ** Return: none ** Exceptions: none ** History: Fri Aug 18 13:11:39 1989, DSJ, Created. ** Tue May 17 1998 simplifications to structure, illiminated ** font, and feature specification levels of structure. */ char unichar[UNICHAR_LEN + 1]; LABELEDLIST char_sample; FEATURE_SET feature_samples; CHAR_DESC char_desc; int i; int feature_type = ShortNameToFeatureType(feature_defs, feature_name); // Description of feature of type feature_type. const FEATURE_DESC_STRUCT* f_desc = feature_defs.FeatureDesc[feature_type]; // Zero out the font_sample_count for all the classes. LIST it = *training_samples; iterate(it) { char_sample = reinterpret_cast(first_node(it)); char_sample->font_sample_count = 0; } while (fscanf(file, "%s %s", CTFontName, unichar) == 2) { if (unicharset != NULL && !unicharset->contains_unichar(unichar)) { unicharset->unichar_insert(unichar); if (unicharset->size() > MAX_NUM_CLASSES) { tprintf("Error: Size of unicharset in training is " "greater than MAX_NUM_CLASSES\n"); exit(1); } } char_sample = FindList(*training_samples, unichar); if (char_sample == NULL) { char_sample = NewLabeledList(unichar); *training_samples = push(*training_samples, char_sample); } char_desc = ReadCharDescription(feature_defs, file); feature_samples = char_desc->FeatureSets[feature_type]; if (char_sample->font_sample_count < max_samples || max_samples <= 0) { for (int feature = 0; feature < feature_samples->NumFeatures; ++feature) { FEATURE f = feature_samples->Features[feature]; for (int dim =0; dim < f->Type->NumParams; ++dim) f->Params[dim] += f_desc->ParamDesc[dim].Circular ? UniformRandomNumber(-circular_spread, circular_spread) : UniformRandomNumber(-linear_spread, linear_spread); } char_sample->List = push(char_sample->List, feature_samples); char_sample->SampleCount++; char_sample->font_sample_count++; } else { FreeFeatureSet(feature_samples); } for (i = 0; i < char_desc->NumFeatureSets; i++) { if (feature_type != i) FreeFeatureSet(char_desc->FeatureSets[i]); } free(char_desc); } } // ReadTrainingSamples /*---------------------------------------------------------------------------*/ void WriteTrainingSamples ( const FEATURE_DEFS_STRUCT &FeatureDefs, char *Directory, LIST CharList, const char* program_feature_type) /* ** Parameters: ** Directory directory to place sample files into ** FontList list of fonts used in the training samples ** Operation: ** This routine writes the specified samples into files which ** are organized according to the font name and character name ** of the samples. ** Return: none ** Exceptions: none ** History: Fri Aug 18 16:17:06 1989, DSJ, Created. */ { LABELEDLIST char_sample; FEATURE_SET FeatureSet; LIST FeatureList; FILE *File; char Filename[MAXNAMESIZE]; int NumSamples; iterate (CharList) // iterate thru all of the fonts { char_sample = (LABELEDLIST) first_node (CharList); // construct the full pathname for the current samples file strcpy (Filename, ""); if (Directory != NULL) { strcat (Filename, Directory); strcat (Filename, "/"); } strcat (Filename, CTFontName); strcat (Filename, "/"); strcat (Filename, char_sample->Label); strcat (Filename, "."); strcat (Filename, program_feature_type); printf ("\nWriting %s ...", Filename); /* if file does not exist, create a new one with an appropriate header; otherwise append samples to the existing file */ File = fopen (Filename, "r"); if (File == NULL) { File = Efopen (Filename, "w"); WriteOldParamDesc( File, FeatureDefs.FeatureDesc[ShortNameToFeatureType( FeatureDefs, program_feature_type)]); } else { fclose (File); File = Efopen (Filename, "a"); } // append samples onto the file FeatureList = char_sample->List; NumSamples = 0; iterate (FeatureList) { FeatureSet = (FEATURE_SET) first_node (FeatureList); WriteFeatureSet (File, FeatureSet); NumSamples++; } fclose (File); } } /* WriteTrainingSamples */ /*---------------------------------------------------------------------------*/ void FreeTrainingSamples ( LIST CharList) /* ** Parameters: ** FontList list of all fonts in document ** Globals: none ** Operation: ** This routine deallocates all of the space allocated to ** the specified list of training samples. ** Return: none ** Exceptions: none ** History: Fri Aug 18 17:44:27 1989, DSJ, Created. */ { LABELEDLIST char_sample; FEATURE_SET FeatureSet; LIST FeatureList; // printf ("FreeTrainingSamples...\n"); iterate (CharList) /* iterate thru all of the fonts */ { char_sample = (LABELEDLIST) first_node (CharList); FeatureList = char_sample->List; iterate (FeatureList) /* iterate thru all of the classes */ { FeatureSet = (FEATURE_SET) first_node (FeatureList); FreeFeatureSet (FeatureSet); } FreeLabeledList (char_sample); } destroy (CharList); } /* FreeTrainingSamples */ /*---------------------------------------------------------------------------*/ void FreeLabeledList ( LABELEDLIST LabeledList) /* ** Parameters: ** LabeledList labeled list to be freed ** Globals: none ** Operation: ** This routine deallocates all of the memory consumed by ** a labeled list. It does not free any memory which may be ** consumed by the items in the list. ** Return: none ** Exceptions: none ** History: Fri Aug 18 17:52:45 1989, DSJ, Created. */ { destroy (LabeledList->List); free (LabeledList->Label); free (LabeledList); } /* FreeLabeledList */ /*---------------------------------------------------------------------------*/ CLUSTERER *SetUpForClustering( const FEATURE_DEFS_STRUCT &FeatureDefs, LABELEDLIST char_sample, const char* program_feature_type) /* ** Parameters: ** char_sample: LABELEDLIST that holds all the feature information for a ** given character. ** Globals: ** None ** Operation: ** This routine reads samples from a LABELEDLIST and enters ** those samples into a clusterer data structure. This ** data structure is then returned to the caller. ** Return: ** Pointer to new clusterer data structure. ** Exceptions: ** None ** History: ** 8/16/89, DSJ, Created. */ { uinT16 N; int i, j; FLOAT32 *Sample = NULL; CLUSTERER *Clusterer; inT32 CharID; LIST FeatureList = NULL; FEATURE_SET FeatureSet = NULL; int desc_index = ShortNameToFeatureType(FeatureDefs, program_feature_type); N = FeatureDefs.FeatureDesc[desc_index]->NumParams; Clusterer = MakeClusterer(N, FeatureDefs.FeatureDesc[desc_index]->ParamDesc); FeatureList = char_sample->List; CharID = 0; iterate(FeatureList) { FeatureSet = (FEATURE_SET) first_node (FeatureList); for (i=0; i < FeatureSet->MaxNumFeatures; i++) { if (Sample == NULL) Sample = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32)); for (j=0; j < N; j++) if (RoundingAccuracy != 0.0f) Sample[j] = round(FeatureSet->Features[i]->Params[j], RoundingAccuracy); else Sample[j] = FeatureSet->Features[i]->Params[j]; MakeSample (Clusterer, Sample, CharID); } CharID++; } if ( Sample != NULL ) free( Sample ); return( Clusterer ); } /* SetUpForClustering */ /*------------------------------------------------------------------------*/ void MergeInsignificantProtos(LIST ProtoList, const char* label, CLUSTERER *Clusterer, CLUSTERCONFIG *Config) { PROTOTYPE *Prototype; bool debug = strcmp(test_ch, label) == 0; LIST pProtoList = ProtoList; iterate(pProtoList) { Prototype = (PROTOTYPE *) first_node (pProtoList); if (Prototype->Significant || Prototype->Merged) continue; FLOAT32 best_dist = 0.125; PROTOTYPE* best_match = NULL; // Find the nearest alive prototype. LIST list_it = ProtoList; iterate(list_it) { PROTOTYPE* test_p = (PROTOTYPE *) first_node (list_it); if (test_p != Prototype && !test_p->Merged) { FLOAT32 dist = ComputeDistance(Clusterer->SampleSize, Clusterer->ParamDesc, Prototype->Mean, test_p->Mean); if (dist < best_dist) { best_match = test_p; best_dist = dist; } } } if (best_match != NULL && !best_match->Significant) { if (debug) tprintf("Merging red clusters (%d+%d) at %g,%g and %g,%g\n", best_match->NumSamples, Prototype->NumSamples, best_match->Mean[0], best_match->Mean[1], Prototype->Mean[0], Prototype->Mean[1]); best_match->NumSamples = MergeClusters(Clusterer->SampleSize, Clusterer->ParamDesc, best_match->NumSamples, Prototype->NumSamples, best_match->Mean, best_match->Mean, Prototype->Mean); Prototype->NumSamples = 0; Prototype->Merged = 1; } else if (best_match != NULL) { if (debug) tprintf("Red proto at %g,%g matched a green one at %g,%g\n", Prototype->Mean[0], Prototype->Mean[1], best_match->Mean[0], best_match->Mean[1]); Prototype->Merged = 1; } } // Mark significant those that now have enough samples. int min_samples = (inT32) (Config->MinSamples * Clusterer->NumChar); pProtoList = ProtoList; iterate(pProtoList) { Prototype = (PROTOTYPE *) first_node (pProtoList); // Process insignificant protos that do not match a green one if (!Prototype->Significant && Prototype->NumSamples >= min_samples && !Prototype->Merged) { if (debug) tprintf("Red proto at %g,%g becoming green\n", Prototype->Mean[0], Prototype->Mean[1]); Prototype->Significant = true; } } } /* MergeInsignificantProtos */ /*-----------------------------------------------------------------------------*/ void CleanUpUnusedData( LIST ProtoList) { PROTOTYPE* Prototype; iterate(ProtoList) { Prototype = (PROTOTYPE *) first_node (ProtoList); if(Prototype->Variance.Elliptical != NULL) { memfree(Prototype->Variance.Elliptical); Prototype->Variance.Elliptical = NULL; } if(Prototype->Magnitude.Elliptical != NULL) { memfree(Prototype->Magnitude.Elliptical); Prototype->Magnitude.Elliptical = NULL; } if(Prototype->Weight.Elliptical != NULL) { memfree(Prototype->Weight.Elliptical); Prototype->Weight.Elliptical = NULL; } } } /*------------------------------------------------------------------------*/ LIST RemoveInsignificantProtos( LIST ProtoList, BOOL8 KeepSigProtos, BOOL8 KeepInsigProtos, int N) { LIST NewProtoList = NIL_LIST; LIST pProtoList; PROTOTYPE* Proto; PROTOTYPE* NewProto; int i; pProtoList = ProtoList; iterate(pProtoList) { Proto = (PROTOTYPE *) first_node (pProtoList); if ((Proto->Significant && KeepSigProtos) || (!Proto->Significant && KeepInsigProtos)) { NewProto = (PROTOTYPE *)Emalloc(sizeof(PROTOTYPE)); NewProto->Mean = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32)); NewProto->Significant = Proto->Significant; NewProto->Style = Proto->Style; NewProto->NumSamples = Proto->NumSamples; NewProto->Cluster = NULL; NewProto->Distrib = NULL; for (i=0; i < N; i++) NewProto->Mean[i] = Proto->Mean[i]; if (Proto->Variance.Elliptical != NULL) { NewProto->Variance.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32)); for (i=0; i < N; i++) NewProto->Variance.Elliptical[i] = Proto->Variance.Elliptical[i]; } else NewProto->Variance.Elliptical = NULL; //--------------------------------------------- if (Proto->Magnitude.Elliptical != NULL) { NewProto->Magnitude.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32)); for (i=0; i < N; i++) NewProto->Magnitude.Elliptical[i] = Proto->Magnitude.Elliptical[i]; } else NewProto->Magnitude.Elliptical = NULL; //------------------------------------------------ if (Proto->Weight.Elliptical != NULL) { NewProto->Weight.Elliptical = (FLOAT32 *)Emalloc(N * sizeof(FLOAT32)); for (i=0; i < N; i++) NewProto->Weight.Elliptical[i] = Proto->Weight.Elliptical[i]; } else NewProto->Weight.Elliptical = NULL; NewProto->TotalMagnitude = Proto->TotalMagnitude; NewProto->LogMagnitude = Proto->LogMagnitude; NewProtoList = push_last(NewProtoList, NewProto); } } //FreeProtoList (ProtoList); return (NewProtoList); } /* RemoveInsignificantProtos */ /*----------------------------------------------------------------------------*/ MERGE_CLASS FindClass ( LIST List, char *Label) { MERGE_CLASS MergeClass; iterate (List) { MergeClass = (MERGE_CLASS) first_node (List); if (strcmp (MergeClass->Label, Label) == 0) return (MergeClass); } return (NULL); } /* FindClass */ /*---------------------------------------------------------------------------*/ MERGE_CLASS NewLabeledClass ( char *Label) { MERGE_CLASS MergeClass; MergeClass = new MERGE_CLASS_NODE; MergeClass->Label = (char*)Emalloc (strlen (Label)+1); strcpy (MergeClass->Label, Label); MergeClass->Class = NewClass (MAX_NUM_PROTOS, MAX_NUM_CONFIGS); return (MergeClass); } /* NewLabeledClass */ /*-----------------------------------------------------------------------------*/ void FreeLabeledClassList ( LIST ClassList) /* ** Parameters: ** FontList list of all fonts in document ** Globals: none ** Operation: ** This routine deallocates all of the space allocated to ** the specified list of training samples. ** Return: none ** Exceptions: none ** History: Fri Aug 18 17:44:27 1989, DSJ, Created. */ { MERGE_CLASS MergeClass; iterate (ClassList) /* iterate thru all of the fonts */ { MergeClass = (MERGE_CLASS) first_node (ClassList); free (MergeClass->Label); FreeClass(MergeClass->Class); delete MergeClass; } destroy (ClassList); } /* FreeLabeledClassList */ /** SetUpForFloat2Int **************************************************/ void SetUpForFloat2Int(const UNICHARSET& unicharset, LIST LabeledClassList) { MERGE_CLASS MergeClass; CLASS_TYPE Class; int NumProtos; int NumConfigs; int NumWords; int i, j; float Values[3]; PROTO NewProto; PROTO OldProto; BIT_VECTOR NewConfig; BIT_VECTOR OldConfig; // printf("Float2Int ...\n"); iterate(LabeledClassList) { UnicityTableEqEq font_set; MergeClass = (MERGE_CLASS) first_node (LabeledClassList); Class = &TrainingData[unicharset.unichar_to_id(MergeClass->Label)]; NumProtos = MergeClass->Class->NumProtos; NumConfigs = MergeClass->Class->NumConfigs; font_set.move(&MergeClass->Class->font_set); Class->NumProtos = NumProtos; Class->MaxNumProtos = NumProtos; Class->Prototypes = (PROTO) Emalloc (sizeof(PROTO_STRUCT) * NumProtos); for(i=0; i < NumProtos; i++) { NewProto = ProtoIn(Class, i); OldProto = ProtoIn(MergeClass->Class, i); Values[0] = OldProto->X; Values[1] = OldProto->Y; Values[2] = OldProto->Angle; Normalize(Values); NewProto->X = OldProto->X; NewProto->Y = OldProto->Y; NewProto->Length = OldProto->Length; NewProto->Angle = OldProto->Angle; NewProto->A = Values[0]; NewProto->B = Values[1]; NewProto->C = Values[2]; } Class->NumConfigs = NumConfigs; Class->MaxNumConfigs = NumConfigs; Class->font_set.move(&font_set); Class->Configurations = (BIT_VECTOR*) Emalloc (sizeof(BIT_VECTOR) * NumConfigs); NumWords = WordsInVectorOfSize(NumProtos); for(i=0; i < NumConfigs; i++) { NewConfig = NewBitVector(NumProtos); OldConfig = MergeClass->Class->Configurations[i]; for(j=0; j < NumWords; j++) NewConfig[j] = OldConfig[j]; Class->Configurations[i] = NewConfig; } } } // SetUpForFloat2Int /*--------------------------------------------------------------------------*/ void Normalize ( float *Values) { register float Slope; register float Intercept; register float Normalizer; Slope = tan (Values [2] * 2 * PI); Intercept = Values [1] - Slope * Values [0]; Normalizer = 1 / sqrt (Slope * Slope + 1.0); Values [0] = Slope * Normalizer; Values [1] = - Normalizer; Values [2] = Intercept * Normalizer; } // Normalize /*-------------------------------------------------------------------------*/ void FreeNormProtoList ( LIST CharList) { LABELEDLIST char_sample; iterate (CharList) /* iterate thru all of the fonts */ { char_sample = (LABELEDLIST) first_node (CharList); FreeLabeledList (char_sample); } destroy (CharList); } // FreeNormProtoList /*---------------------------------------------------------------------------*/ void AddToNormProtosList( LIST* NormProtoList, LIST ProtoList, char* CharName) { PROTOTYPE* Proto; LABELEDLIST LabeledProtoList; LabeledProtoList = NewLabeledList(CharName); iterate(ProtoList) { Proto = (PROTOTYPE *) first_node (ProtoList); LabeledProtoList->List = push(LabeledProtoList->List, Proto); } *NormProtoList = push(*NormProtoList, LabeledProtoList); } /*---------------------------------------------------------------------------*/ int NumberOfProtos( LIST ProtoList, BOOL8 CountSigProtos, BOOL8 CountInsigProtos) { int N = 0; PROTOTYPE *Proto; iterate(ProtoList) { Proto = (PROTOTYPE *) first_node ( ProtoList ); if (( Proto->Significant && CountSigProtos ) || ( ! Proto->Significant && CountInsigProtos ) ) N++; } return(N); }