/////////////////////////////////////////////////////////////////////// // File: params_model.cpp // Description: Trained language model parameters. // Author: David Eger // Created: Mon Jun 11 11:26:42 PDT 2012 // // (C) Copyright 2012, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include "params_model.h" #include #include #include #include "bitvector.h" #include "tprintf.h" namespace tesseract { // Scale factor to apply to params model scores. static const float kScoreScaleFactor = 100.0f; // Minimum cost result to return. static const float kMinFinalCost = 0.001f; // Maximum cost result to return. static const float kMaxFinalCost = 100.0f; void ParamsModel::Print() { for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) { tprintf("ParamsModel for pass %d lang %s\n", p, lang_.string()); for (int i = 0; i < weights_vec_[p].size(); ++i) { tprintf("%s = %g\n", kParamsTrainingFeatureTypeName[i], weights_vec_[p][i]); } } } void ParamsModel::Copy(const ParamsModel &other_model) { for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) { weights_vec_[p] = other_model.weights_for_pass( static_cast(p)); } } // Given a (modifiable) line, parse out a key / value pair. // Return true on success. bool ParamsModel::ParseLine(char *line, char** key, float *val) { if (line[0] == '#') return false; int end_of_key = 0; while (line[end_of_key] && !(isascii(line[end_of_key]) && isspace(line[end_of_key]))) { end_of_key++; } if (!line[end_of_key]) { tprintf("ParamsModel::Incomplete line %s\n", line); return false; } line[end_of_key++] = 0; *key = line; if (sscanf(line + end_of_key, " %f", val) != 1) return false; return true; } // Applies params model weights to the given features. // Assumes that features is an array of size PTRAIN_NUM_FEATURE_TYPES. // The cost is set to a number that can be multiplied by the outline length, // as with the old ratings scheme. This enables words of different length // and combinations of words to be compared meaningfully. float ParamsModel::ComputeCost(const float features[]) const { float unnorm_score = 0.0; for (int f = 0; f < PTRAIN_NUM_FEATURE_TYPES; ++f) { unnorm_score += weights_vec_[pass_][f] * features[f]; } return ClipToRange(-unnorm_score / kScoreScaleFactor, kMinFinalCost, kMaxFinalCost); } bool ParamsModel::Equivalent(const ParamsModel &that) const { float epsilon = 0.0001; for (int p = 0; p < PTRAIN_NUM_PASSES; ++p) { if (weights_vec_[p].size() != that.weights_vec_[p].size()) return false; for (int i = 0; i < weights_vec_[p].size(); i++) { if (weights_vec_[p][i] != that.weights_vec_[p][i] && fabs(weights_vec_[p][i] - that.weights_vec_[p][i]) > epsilon) return false; } } return true; } bool ParamsModel::LoadFromFile( const char *lang, const char *full_path) { TFile fp; if (!fp.Open(full_path, nullptr)) { tprintf("Error opening file %s\n", full_path); return false; } return LoadFromFp(lang, &fp); } bool ParamsModel::LoadFromFp(const char *lang, TFile *fp) { const int kMaxLineSize = 100; char line[kMaxLineSize]; BitVector present; present.Init(PTRAIN_NUM_FEATURE_TYPES); lang_ = lang; // Load weights for passes with adaption on. GenericVector &weights = weights_vec_[pass_]; weights.init_to_size(PTRAIN_NUM_FEATURE_TYPES, 0.0); while (fp->FGets(line, kMaxLineSize) != nullptr) { char *key = nullptr; float value; if (!ParseLine(line, &key, &value)) continue; int idx = ParamsTrainingFeatureByName(key); if (idx < 0) { tprintf("ParamsModel::Unknown parameter %s\n", key); continue; } if (!present[idx]) { present.SetValue(idx, true); } weights[idx] = value; } bool complete = (present.NumSetBits() == PTRAIN_NUM_FEATURE_TYPES); if (!complete) { for (int i = 0; i < PTRAIN_NUM_FEATURE_TYPES; i++) { if (!present[i]) { tprintf("Missing field %s.\n", kParamsTrainingFeatureTypeName[i]); } } lang_ = ""; weights.truncate(0); } return complete; } bool ParamsModel::SaveToFile(const char *full_path) const { const GenericVector &weights = weights_vec_[pass_]; if (weights.size() != PTRAIN_NUM_FEATURE_TYPES) { tprintf("Refusing to save ParamsModel that has not been initialized.\n"); return false; } FILE *fp = fopen(full_path, "wb"); if (!fp) { tprintf("Could not open %s for writing.\n", full_path); return false; } bool all_good = true; for (int i = 0; i < weights.size(); i++) { if (fprintf(fp, "%s %f\n", kParamsTrainingFeatureTypeName[i], weights[i]) < 0) { all_good = false; } } fclose(fp); return all_good; } } // namespace tesseract