// Copyright 2011 Google Inc. All Rights Reserved. // Author: rays@google.com (Ray Smith) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "textlineprojection.h" #include "allheaders.h" #include "bbgrid.h" // Base class. #include "blobbox.h" // BlobNeighourDir. #include "blobs.h" #include "colpartition.h" #include "normalis.h" // Padding factor to use on definitely oriented blobs const int kOrientedPadFactor = 8; // Padding factor to use on not definitely oriented blobs. const int kDefaultPadFactor = 2; // Penalty factor for going away from the line center. const int kWrongWayPenalty = 4; // Ratio between parallel gap and perpendicular gap used to measure total // distance of a box from a target box in curved textline space. // parallel-gap is treated more favorably by this factor to allow catching // quotes and elipsis at the end of textlines. const int kParaPerpDistRatio = 4; // Multiple of scale_factor_ that the inter-line gap must be before we start // padding the increment box perpendicular to the text line. const int kMinLineSpacingFactor = 4; // Maximum tab-stop overrun for horizontal padding, in projection pixels. const int kMaxTabStopOverrun = 6; namespace tesseract { TextlineProjection::TextlineProjection(int resolution) : x_origin_(0), y_origin_(0), pix_(NULL) { // The projection map should be about 100 ppi, whatever the input. scale_factor_ = IntCastRounded(resolution / 100.0); if (scale_factor_ < 1) scale_factor_ = 1; } TextlineProjection::~TextlineProjection() { pixDestroy(&pix_); } // Build the projection profile given the input_block containing lists of // blobs, a rotation to convert to image coords, // and a full-resolution nontext_map, marking out areas to avoid. // During construction, we have the following assumptions: // The rotation is a multiple of 90 degrees, ie no deskew yet. // The blobs have had their left and right rules set to also limit // the range of projection. void TextlineProjection::ConstructProjection(TO_BLOCK* input_block, const FCOORD& rotation, Pix* nontext_map) { pixDestroy(&pix_); TBOX image_box(0, 0, pixGetWidth(nontext_map), pixGetHeight(nontext_map)); x_origin_ = 0; y_origin_ = image_box.height(); int width = (image_box.width() + scale_factor_ - 1) / scale_factor_; int height = (image_box.height() + scale_factor_ - 1) / scale_factor_; pix_ = pixCreate(width, height, 8); ProjectBlobs(&input_block->blobs, rotation, image_box, nontext_map); ProjectBlobs(&input_block->large_blobs, rotation, image_box, nontext_map); Pix* final_pix = pixBlockconv(pix_, 1, 1); // Pix* final_pix = pixBlockconv(pix_, 2, 2); pixDestroy(&pix_); pix_ = final_pix; } // Display the blobs in the window colored according to textline quality. void TextlineProjection::PlotGradedBlobs(BLOBNBOX_LIST* blobs, ScrollView* win) { #ifndef GRAPHICS_DISABLED BLOBNBOX_IT it(blobs); for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) { BLOBNBOX* blob = it.data(); const TBOX& box = blob->bounding_box(); bool bad_box = BoxOutOfHTextline(box, NULL, false); if (blob->UniquelyVertical()) win->Pen(ScrollView::YELLOW); else win->Pen(bad_box ? ScrollView::RED : ScrollView::BLUE); win->Rectangle(box.left(), box.bottom(), box.right(), box.top()); } win->Update(); #endif // GRAPHICS_DISABLED } // Moves blobs that look like they don't sit well on a textline from the // input blobs list to the output small_blobs list. // This gets them away from initial textline finding to stop diacritics // from forming incorrect textlines. (Introduced mainly to fix Thai.) void TextlineProjection::MoveNonTextlineBlobs( BLOBNBOX_LIST* blobs, BLOBNBOX_LIST* small_blobs) const { BLOBNBOX_IT it(blobs); BLOBNBOX_IT small_it(small_blobs); for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) { BLOBNBOX* blob = it.data(); const TBOX& box = blob->bounding_box(); bool debug = AlignedBlob::WithinTestRegion(2, box.left(), box.bottom()); if (BoxOutOfHTextline(box, NULL, debug) && !blob->UniquelyVertical()) { blob->ClearNeighbours(); small_it.add_to_end(it.extract()); } } } // Create a window and display the projection in it. void TextlineProjection::DisplayProjection() const { int width = pixGetWidth(pix_); int height = pixGetHeight(pix_); Pix* pixc = pixCreate(width, height, 32); int src_wpl = pixGetWpl(pix_); int col_wpl = pixGetWpl(pixc); uinT32* src_data = pixGetData(pix_); uinT32* col_data = pixGetData(pixc); for (int y = 0; y < height; ++y, src_data += src_wpl, col_data += col_wpl) { for (int x = 0; x < width; ++x) { int pixel = GET_DATA_BYTE(src_data, x); l_uint32 result; if (pixel <= 17) composeRGBPixel(0, 0, pixel * 15, &result); else if (pixel <= 145) composeRGBPixel(0, (pixel - 17) * 2, 255, &result); else composeRGBPixel((pixel - 145) * 2, 255, 255, &result); col_data[x] = result; } } #if 0 // TODO(rays) uncomment when scrollview can display non-binary images. ScrollView* win = new ScrollView("Projection", 0, 0, width, height, width, height); win->Image(pixc, 0, 0); win->Update(); #else pixWrite("projection.png", pixc, IFF_PNG); #endif pixDestroy(&pixc); } // Compute the distance of the box from the partition using curved projection // space. As DistanceOfBoxFromBox, except that the direction is taken from // the ColPartition and the median bounds of the ColPartition are used as // the to_box. int TextlineProjection::DistanceOfBoxFromPartition(const TBOX& box, const ColPartition& part, const DENORM* denorm, bool debug) const { // Compute a partition box that uses the median top/bottom of the blobs // within and median left/right for vertical. TBOX part_box = part.bounding_box(); if (part.IsHorizontalType()) { part_box.set_top(part.median_top()); part_box.set_bottom(part.median_bottom()); } else { part_box.set_left(part.median_left()); part_box.set_right(part.median_right()); } // Now use DistanceOfBoxFromBox to make the actual calculation. return DistanceOfBoxFromBox(box, part_box, part.IsHorizontalType(), denorm, debug); } // Compute the distance from the from_box to the to_box using curved // projection space. Separation that involves a decrease in projection // density (moving from the from_box to the to_box) is weighted more heavily // than constant density, and an increase is weighted less. // If horizontal_textline is true, then curved space is used vertically, // as for a diacritic on the edge of a textline. // The projection uses original image coords, so denorm is used to get // back to the image coords from box/part space. // How the calculation works: Think of a diacritic near a textline. // Distance is measured from the far side of the from_box to the near side of // the to_box. Shown is the horizontal textline case. // |------^-----| // | from | box | // |------|-----| // perpendicular | // <------v-------->|--------------------| // parallel | to box | // |--------------------| // Perpendicular distance uses "curved space" See VerticalDistance below. // Parallel distance is linear. // Result is perpendicular_gap + parallel_gap / kParaPerpDistRatio. int TextlineProjection::DistanceOfBoxFromBox(const TBOX& from_box, const TBOX& to_box, bool horizontal_textline, const DENORM* denorm, bool debug) const { // The parallel_gap is the horizontal gap between a horizontal textline and // the box. Analogous for vertical. int parallel_gap = 0; // start_pt is the box end of the line to be modified for curved space. TPOINT start_pt; // end_pt is the partition end of the line to be modified for curved space. TPOINT end_pt; if (horizontal_textline) { parallel_gap = from_box.x_gap(to_box) + from_box.width(); start_pt.x = (from_box.left() + from_box.right()) / 2; end_pt.x = start_pt.x; if (from_box.top() - to_box.top() >= to_box.bottom() - from_box.bottom()) { start_pt.y = from_box.top(); end_pt.y = MIN(to_box.top(), start_pt.y); } else { start_pt.y = from_box.bottom(); end_pt.y = MAX(to_box.bottom(), start_pt.y); } } else { parallel_gap = from_box.y_gap(to_box) + from_box.height(); if (from_box.right() - to_box.right() >= to_box.left() - from_box.left()) { start_pt.x = from_box.right(); end_pt.x = MIN(to_box.right(), start_pt.x); } else { start_pt.x = from_box.left(); end_pt.x = MAX(to_box.left(), start_pt.x); } start_pt.y = (from_box.bottom() + from_box.top()) / 2; end_pt.y = start_pt.y; } // The perpendicular gap is the max vertical distance gap out of: // top of from_box to to_box top and bottom of from_box to to_box bottom. // This value is then modified for curved projection space. // Analogous for vertical. int perpendicular_gap = 0; // If start_pt == end_pt, then the from_box lies entirely within the to_box // (in the perpendicular direction), so we don't need to calculate the // perpendicular_gap. if (start_pt.x != end_pt.x || start_pt.y != end_pt.y) { if (denorm != NULL) { // Denormalize the start and end. denorm->DenormTransform(NULL, start_pt, &start_pt); denorm->DenormTransform(NULL, end_pt, &end_pt); } if (abs(start_pt.y - end_pt.y) >= abs(start_pt.x - end_pt.x)) { perpendicular_gap = VerticalDistance(debug, start_pt.x, start_pt.y, end_pt.y); } else { perpendicular_gap = HorizontalDistance(debug, start_pt.x, end_pt.x, start_pt.y); } } // The parallel_gap weighs less than the perpendicular_gap. return perpendicular_gap + parallel_gap / kParaPerpDistRatio; } // Compute the distance between (x, y1) and (x, y2) using the rule that // a decrease in textline density is weighted more heavily than an increase. // The coordinates are in source image space, ie processed by any denorm // already, but not yet scaled by scale_factor_. // Going from the outside of a textline to the inside should measure much // less distance than going from the inside of a textline to the outside. // How it works: // An increase is cheap (getting closer to a textline). // Constant costs unity. // A decrease is expensive (getting further from a textline). // Pixels in projection map Counted distance // 2 // 3 1/x // 3 1 // 2 x // 5 1/x // 7 1/x // Total: 1 + x + 3/x where x = kWrongWayPenalty. int TextlineProjection::VerticalDistance(bool debug, int x, int y1, int y2) const { x = ImageXToProjectionX(x); y1 = ImageYToProjectionY(y1); y2 = ImageYToProjectionY(y2); if (y1 == y2) return 0; int wpl = pixGetWpl(pix_); int step = y1 < y2 ? 1 : -1; uinT32* data = pixGetData(pix_) + y1 * wpl; wpl *= step; int prev_pixel = GET_DATA_BYTE(data, x); int distance = 0; int right_way_steps = 0; for (int y = y1; y != y2; y += step) { data += wpl; int pixel = GET_DATA_BYTE(data, x); if (debug) tprintf("At (%d,%d), pix = %d, prev=%d\n", x, y + step, pixel, prev_pixel); if (pixel < prev_pixel) distance += kWrongWayPenalty; else if (pixel > prev_pixel) ++right_way_steps; else ++distance; prev_pixel = pixel; } return distance * scale_factor_ + right_way_steps * scale_factor_ / kWrongWayPenalty; } // Compute the distance between (x1, y) and (x2, y) using the rule that // a decrease in textline density is weighted more heavily than an increase. int TextlineProjection::HorizontalDistance(bool debug, int x1, int x2, int y) const { x1 = ImageXToProjectionX(x1); x2 = ImageXToProjectionX(x2); y = ImageYToProjectionY(y); if (x1 == x2) return 0; int wpl = pixGetWpl(pix_); int step = x1 < x2 ? 1 : -1; uinT32* data = pixGetData(pix_) + y * wpl; int prev_pixel = GET_DATA_BYTE(data, x1); int distance = 0; int right_way_steps = 0; for (int x = x1; x != x2; x += step) { int pixel = GET_DATA_BYTE(data, x + step); if (debug) tprintf("At (%d,%d), pix = %d, prev=%d\n", x + step, y, pixel, prev_pixel); if (pixel < prev_pixel) distance += kWrongWayPenalty; else if (pixel > prev_pixel) ++right_way_steps; else ++distance; prev_pixel = pixel; } return distance * scale_factor_ + right_way_steps * scale_factor_ / kWrongWayPenalty; } // Returns true if the blob appears to be outside of a textline. // Such blobs are potentially diacritics (even if large in Thai) and should // be kept away from initial textline finding. bool TextlineProjection::BoxOutOfHTextline(const TBOX& box, const DENORM* denorm, bool debug) const { int grad1 = 0; int grad2 = 0; EvaluateBoxInternal(box, denorm, debug, &grad1, &grad2, NULL, NULL); int worst_result = MIN(grad1, grad2); int total_result = grad1 + grad2; if (total_result >= 6) return false; // Strongly in textline. // Medium strength: if either gradient is negative, it is likely outside // the body of the textline. if (worst_result < 0) return true; return false; } // Evaluates the textlineiness of a ColPartition. Uses EvaluateBox below, // but uses the median top/bottom for horizontal and median left/right for // vertical instead of the bounding box edges. // Evaluates for both horizontal and vertical and returns the best result, // with a positive value for horizontal and a negative value for vertical. int TextlineProjection::EvaluateColPartition(const ColPartition& part, const DENORM* denorm, bool debug) const { if (part.IsSingleton()) return EvaluateBox(part.bounding_box(), denorm, debug); // Test vertical orientation. TBOX box = part.bounding_box(); // Use the partition median for left/right. box.set_left(part.median_left()); box.set_right(part.median_right()); int vresult = EvaluateBox(box, denorm, debug); // Test horizontal orientation. box = part.bounding_box(); // Use the partition median for top/bottom. box.set_top(part.median_top()); box.set_bottom(part.median_bottom()); int hresult = EvaluateBox(box, denorm, debug); if (debug) { tprintf("Partition hresult=%d, vresult=%d from:", hresult, vresult); part.bounding_box().print(); part.Print(); } return hresult >= -vresult ? hresult : vresult; } // Computes the mean projection gradients over the horizontal and vertical // edges of the box: // -h-h-h-h-h-h // |------------| mean=htop -v|+v--------+v|-v // |+h+h+h+h+h+h| -v|+v +v|-v // | | -v|+v +v|-v // | box | -v|+v box +v|-v // | | -v|+v +v|-v // |+h+h+h+h+h+h| -v|+v +v|-v // |------------| mean=hbot -v|+v--------+v|-v // -h-h-h-h-h-h // mean=vleft mean=vright // // Returns MAX(htop,hbot) - MAX(vleft,vright), which is a positive number // for a horizontal textline, a negative number for a vertical textline, // and near zero for undecided. Undecided is most likely non-text. // All the gradients are truncated to remain non-negative, since negative // horizontal gradients don't give any indication of being vertical and // vice versa. // Additional complexity: The coordinates have to be transformed to original // image coordinates with denorm (if not null), scaled to match the projection // pix, and THEN step out 2 pixels each way from the edge to compute the // gradient, and tries 3 positions, each measuring the gradient over a // 4-pixel spread: (+3/-1), (+2/-2), (+1/-3). This complexity is handled by // several layers of helpers below. int TextlineProjection::EvaluateBox(const TBOX& box, const DENORM* denorm, bool debug) const { return EvaluateBoxInternal(box, denorm, debug, NULL, NULL, NULL, NULL); } // Internal version of EvaluateBox returns the unclipped gradients as well // as the result of EvaluateBox. // hgrad1 and hgrad2 are the gradients for the horizontal textline. int TextlineProjection::EvaluateBoxInternal(const TBOX& box, const DENORM* denorm, bool debug, int* hgrad1, int* hgrad2, int* vgrad1, int* vgrad2) const { int top_gradient = BestMeanGradientInRow(denorm, box.left(), box.right(), box.top(), true); int bottom_gradient = -BestMeanGradientInRow(denorm, box.left(), box.right(), box.bottom(), false); int left_gradient = BestMeanGradientInColumn(denorm, box.left(), box.bottom(), box.top(), true); int right_gradient = -BestMeanGradientInColumn(denorm, box.right(), box.bottom(), box.top(), false); int top_clipped = MAX(top_gradient, 0); int bottom_clipped = MAX(bottom_gradient, 0); int left_clipped = MAX(left_gradient, 0); int right_clipped = MAX(right_gradient, 0); if (debug) { tprintf("Gradients: top = %d, bottom = %d, left= %d, right= %d for box:", top_gradient, bottom_gradient, left_gradient, right_gradient); box.print(); } int result = MAX(top_clipped, bottom_clipped) - MAX(left_clipped, right_clipped); if (hgrad1 != NULL && hgrad2 != NULL) { *hgrad1 = top_gradient; *hgrad2 = bottom_gradient; } if (vgrad1 != NULL && vgrad2 != NULL) { *vgrad1 = left_gradient; *vgrad2 = right_gradient; } return result; } // Helper returns the mean gradient value for the horizontal row at the given // y, (in the external coordinates) by subtracting the mean of the transformed // row 2 pixels above from the mean of the transformed row 2 pixels below. // This gives a positive value for a good top edge and negative for bottom. // Returns the best result out of +2/-2, +3/-1, +1/-3 pixels from the edge. int TextlineProjection::BestMeanGradientInRow(const DENORM* denorm, inT16 min_x, inT16 max_x, inT16 y, bool best_is_max) const { TPOINT start_pt(min_x, y); TPOINT end_pt(max_x, y); int upper = MeanPixelsInLineSegment(denorm, -2, start_pt, end_pt); int lower = MeanPixelsInLineSegment(denorm, 2, start_pt, end_pt); int best_gradient = lower - upper; upper = MeanPixelsInLineSegment(denorm, -1, start_pt, end_pt); lower = MeanPixelsInLineSegment(denorm, 3, start_pt, end_pt); int gradient = lower - upper; if ((gradient > best_gradient) == best_is_max) best_gradient = gradient; upper = MeanPixelsInLineSegment(denorm, -3, start_pt, end_pt); lower = MeanPixelsInLineSegment(denorm, 1, start_pt, end_pt); gradient = lower - upper; if ((gradient > best_gradient) == best_is_max) best_gradient = gradient; return best_gradient; } // Helper returns the mean gradient value for the vertical column at the // given x, (in the external coordinates) by subtracting the mean of the // transformed column 2 pixels left from the mean of the transformed column // 2 pixels to the right. // This gives a positive value for a good left edge and negative for right. // Returns the best result out of +2/-2, +3/-1, +1/-3 pixels from the edge. int TextlineProjection::BestMeanGradientInColumn(const DENORM* denorm, inT16 x, inT16 min_y, inT16 max_y, bool best_is_max) const { TPOINT start_pt(x, min_y); TPOINT end_pt(x, max_y); int left = MeanPixelsInLineSegment(denorm, -2, start_pt, end_pt); int right = MeanPixelsInLineSegment(denorm, 2, start_pt, end_pt); int best_gradient = right - left; left = MeanPixelsInLineSegment(denorm, -1, start_pt, end_pt); right = MeanPixelsInLineSegment(denorm, 3, start_pt, end_pt); int gradient = right - left; if ((gradient > best_gradient) == best_is_max) best_gradient = gradient; left = MeanPixelsInLineSegment(denorm, -3, start_pt, end_pt); right = MeanPixelsInLineSegment(denorm, 1, start_pt, end_pt); gradient = right - left; if ((gradient > best_gradient) == best_is_max) best_gradient = gradient; return best_gradient; } // Helper returns the mean pixel value over the line between the start_pt and // end_pt (inclusive), but shifted perpendicular to the line in the projection // image by offset pixels. For simplicity, it is assumed that the vector is // either nearly horizontal or nearly vertical. It works on skewed textlines! // The end points are in external coordinates, and will be denormalized with // the denorm if not NULL before further conversion to pix coordinates. // After all the conversions, the offset is added to the direction // perpendicular to the line direction. The offset is thus in projection image // coordinates, which allows the caller to get a guaranteed displacement // between pixels used to calculate gradients. int TextlineProjection::MeanPixelsInLineSegment(const DENORM* denorm, int offset, TPOINT start_pt, TPOINT end_pt) const { TransformToPixCoords(denorm, &start_pt); TransformToPixCoords(denorm, &end_pt); TruncateToImageBounds(&start_pt); TruncateToImageBounds(&end_pt); int wpl = pixGetWpl(pix_); uinT32* data = pixGetData(pix_); int total = 0; int count = 0; int x_delta = end_pt.x - start_pt.x; int y_delta = end_pt.y - start_pt.y; if (abs(x_delta) >= abs(y_delta)) { if (x_delta == 0) return 0; // Horizontal line. Add the offset vertically. int x_step = x_delta > 0 ? 1 : -1; // Correct offset for rotation, keeping it anti-clockwise of the delta. offset *= x_step; start_pt.y += offset; end_pt.y += offset; TruncateToImageBounds(&start_pt); TruncateToImageBounds(&end_pt); x_delta = end_pt.x - start_pt.x; y_delta = end_pt.y - start_pt.y; count = x_delta * x_step + 1; for (int x = start_pt.x; x != end_pt.x; x += x_step) { int y = start_pt.y + DivRounded(y_delta * (x - start_pt.x), x_delta); total += GET_DATA_BYTE(data + wpl * y, x); } } else { // Vertical line. Add the offset horizontally. int y_step = y_delta > 0 ? 1 : -1; // Correct offset for rotation, keeping it anti-clockwise of the delta. // Pix holds the image with y=0 at the top, so the offset is negated. offset *= -y_step; start_pt.x += offset; end_pt.x += offset; TruncateToImageBounds(&start_pt); TruncateToImageBounds(&end_pt); x_delta = end_pt.x - start_pt.x; y_delta = end_pt.y - start_pt.y; count = y_delta * y_step + 1; for (int y = start_pt.y; y != end_pt.y; y += y_step) { int x = start_pt.x + DivRounded(x_delta * (y - start_pt.y), y_delta); total += GET_DATA_BYTE(data + wpl * y, x); } } return DivRounded(total, count); } // Given an input pix, and a box, the sides of the box are shrunk inwards until // they bound any black pixels found within the original box. // The function converts between tesseract coords and the pix coords assuming // that this pix is full resolution equal in size to the original image. // Returns an empty box if there are no black pixels in the source box. static TBOX BoundsWithinBox(Pix* pix, const TBOX& box) { int im_height = pixGetHeight(pix); Box* input_box = boxCreate(box.left(), im_height - box.top(), box.width(), box.height()); Box* output_box = NULL; pixClipBoxToForeground(pix, input_box, NULL, &output_box); TBOX result_box; if (output_box != NULL) { l_int32 x, y, width, height; boxGetGeometry(output_box, &x, &y, &width, &height); result_box.set_left(x); result_box.set_right(x + width); result_box.set_top(im_height - y); result_box.set_bottom(result_box.top() - height); boxDestroy(&output_box); } boxDestroy(&input_box); return result_box; } // Splits the given box in half at x_middle or y_middle according to split_on_x // and checks for nontext_map pixels in each half. Reduces the bbox so that it // still includes the middle point, but does not touch any fg pixels in // nontext_map. An empty box may be returned if there is no such box. static void TruncateBoxToMissNonText(int x_middle, int y_middle, bool split_on_x, Pix* nontext_map, TBOX* bbox) { TBOX box1(*bbox); TBOX box2(*bbox); TBOX im_box; if (split_on_x) { box1.set_right(x_middle); im_box = BoundsWithinBox(nontext_map, box1); if (!im_box.null_box()) box1.set_left(im_box.right()); box2.set_left(x_middle); im_box = BoundsWithinBox(nontext_map, box2); if (!im_box.null_box()) box2.set_right(im_box.left()); } else { box1.set_bottom(y_middle); im_box = BoundsWithinBox(nontext_map, box1); if (!im_box.null_box()) box1.set_top(im_box.bottom()); box2.set_top(y_middle); im_box = BoundsWithinBox(nontext_map, box2); if (!im_box.null_box()) box2.set_bottom(im_box.top()); } box1 += box2; *bbox = box1; } // Helper function to add 1 to a rectangle in source image coords to the // internal projection pix_. void TextlineProjection::IncrementRectangle8Bit(const TBOX& box) { int scaled_left = ImageXToProjectionX(box.left()); int scaled_top = ImageYToProjectionY(box.top()); int scaled_right = ImageXToProjectionX(box.right()); int scaled_bottom = ImageYToProjectionY(box.bottom()); int wpl = pixGetWpl(pix_); uinT32* data = pixGetData(pix_) + scaled_top * wpl; for (int y = scaled_top; y <= scaled_bottom; ++y) { for (int x = scaled_left; x <= scaled_right; ++x) { int pixel = GET_DATA_BYTE(data, x); if (pixel < 255) SET_DATA_BYTE(data, x, pixel + 1); } data += wpl; } } // Inserts a list of blobs into the projection. // Rotation is a multiple of 90 degrees to get from blob coords to // nontext_map coords, nontext_map_box is the bounds of the nontext_map. // Blobs are spread horizontally or vertically according to their internal // flags, but the spreading is truncated by set pixels in the nontext_map // and also by the horizontal rule line limits on the blobs. void TextlineProjection::ProjectBlobs(BLOBNBOX_LIST* blobs, const FCOORD& rotation, const TBOX& nontext_map_box, Pix* nontext_map) { BLOBNBOX_IT blob_it(blobs); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { BLOBNBOX* blob = blob_it.data(); TBOX bbox = blob->bounding_box(); ICOORD middle((bbox.left() + bbox.right()) / 2, (bbox.bottom() + bbox.top()) / 2); bool spreading_horizontally = PadBlobBox(blob, &bbox); // Rotate to match the nontext_map. bbox.rotate(rotation); middle.rotate(rotation); if (rotation.x() == 0.0f) spreading_horizontally = !spreading_horizontally; // Clip to the image before applying the increments. bbox &= nontext_map_box; // This is in-place box intersection. // Check for image pixels before spreading. TruncateBoxToMissNonText(middle.x(), middle.y(), spreading_horizontally, nontext_map, &bbox); if (bbox.area() > 0) { IncrementRectangle8Bit(bbox); } } } // Pads the bounding box of the given blob according to whether it is on // a horizontal or vertical text line, taking into account tab-stops near // the blob. Returns true if padding was in the horizontal direction. bool TextlineProjection::PadBlobBox(BLOBNBOX* blob, TBOX* bbox) { // Determine which direction to spread. // If text is well spaced out, it can be useful to pad perpendicular to // the textline direction, so as to ensure diacritics get absorbed // correctly, but if the text is tightly spaced, this will destroy the // blank space between textlines in the projection map, and that would // be very bad. int pad_limit = scale_factor_ * kMinLineSpacingFactor; int xpad = 0; int ypad = 0; bool padding_horizontally = false; if (blob->UniquelyHorizontal()) { xpad = bbox->height() * kOrientedPadFactor; padding_horizontally = true; // If the text appears to be very well spaced, pad the other direction by a // single pixel in the projection profile space to help join diacritics to // the textline. if ((blob->neighbour(BND_ABOVE) == NULL || bbox->y_gap(blob->neighbour(BND_ABOVE)->bounding_box()) > pad_limit) && (blob->neighbour(BND_BELOW) == NULL || bbox->y_gap(blob->neighbour(BND_BELOW)->bounding_box()) > pad_limit)) { ypad = scale_factor_; } } else if (blob->UniquelyVertical()) { ypad = bbox->width() * kOrientedPadFactor; if ((blob->neighbour(BND_LEFT) == NULL || bbox->x_gap(blob->neighbour(BND_LEFT)->bounding_box()) > pad_limit) && (blob->neighbour(BND_RIGHT) == NULL || bbox->x_gap(blob->neighbour(BND_RIGHT)->bounding_box()) > pad_limit)) { xpad = scale_factor_; } } else { if ((blob->neighbour(BND_ABOVE) != NULL && blob->neighbour(BND_ABOVE)->neighbour(BND_BELOW) == blob) || (blob->neighbour(BND_BELOW) != NULL && blob->neighbour(BND_BELOW)->neighbour(BND_ABOVE) == blob)) { ypad = bbox->width() * kDefaultPadFactor; } if ((blob->neighbour(BND_RIGHT) != NULL && blob->neighbour(BND_RIGHT)->neighbour(BND_LEFT) == blob) || (blob->neighbour(BND_LEFT) != NULL && blob->neighbour(BND_LEFT)->neighbour(BND_RIGHT) == blob)) { xpad = bbox->height() * kDefaultPadFactor; padding_horizontally = true; } } bbox->pad(xpad, ypad); pad_limit = scale_factor_ * kMaxTabStopOverrun; // Now shrink horizontally to avoid stepping more than pad_limit over a // tab-stop. if (bbox->left() < blob->left_rule() - pad_limit) { bbox->set_left(blob->left_rule() - pad_limit); } if (bbox->right() > blob->right_rule() + pad_limit) { bbox->set_right(blob->right_rule() + pad_limit); } return padding_horizontally; } // Helper denormalizes the TPOINT with the denorm if not NULL, then // converts to pix_ coordinates. void TextlineProjection::TransformToPixCoords(const DENORM* denorm, TPOINT* pt) const { if (denorm != NULL) { // Denormalize the point. denorm->DenormTransform(NULL, *pt, pt); } pt->x = ImageXToProjectionX(pt->x); pt->y = ImageYToProjectionY(pt->y); } // Helper truncates the TPOINT to be within the pix_. void TextlineProjection::TruncateToImageBounds(TPOINT* pt) const { pt->x = ClipToRange(pt->x, 0, pixGetWidth(pix_) - 1); pt->y = ClipToRange(pt->y, 0, pixGetHeight(pix_) - 1); } // Transform tesseract image coordinates to coordinates used in the projection. int TextlineProjection::ImageXToProjectionX(int x) const { x = ClipToRange((x - x_origin_) / scale_factor_, 0, pixGetWidth(pix_) - 1); return x; } int TextlineProjection::ImageYToProjectionY(int y) const { y = ClipToRange((y_origin_ - y) / scale_factor_, 0, pixGetHeight(pix_) - 1); return y; } } // namespace tesseract.