// Copyright 2010 Google Inc. All Rights Reserved. // Author: rays@google.com (Ray Smith) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include "trainingsample.h" #include #include "allheaders.h" #include "helpers.h" #include "intfeaturemap.h" #include "normfeat.h" #include "shapetable.h" namespace tesseract { ELISTIZE(TrainingSample) // Center of randomizing operations. const int kRandomizingCenter = 128; // Randomizing factors. const int TrainingSample::kYShiftValues[kSampleYShiftSize] = { 6, 3, -3, -6, 0 }; const double TrainingSample::kScaleValues[kSampleScaleSize] = { 1.0625, 0.9375, 1.0 }; TrainingSample::~TrainingSample() { delete [] features_; delete [] micro_features_; } // WARNING! Serialize/DeSerialize do not save/restore the "cache" data // members, which is mostly the mapped features, and the weight. // It is assumed these can all be reconstructed from what is saved. // Writes to the given file. Returns false in case of error. bool TrainingSample::Serialize(FILE* fp) const { if (fwrite(&class_id_, sizeof(class_id_), 1, fp) != 1) return false; if (fwrite(&font_id_, sizeof(font_id_), 1, fp) != 1) return false; if (fwrite(&page_num_, sizeof(page_num_), 1, fp) != 1) return false; if (!bounding_box_.Serialize(fp)) return false; if (fwrite(&num_features_, sizeof(num_features_), 1, fp) != 1) return false; if (fwrite(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1) return false; if (fwrite(features_, sizeof(*features_), num_features_, fp) != num_features_) return false; if (fwrite(micro_features_, sizeof(*micro_features_), num_micro_features_, fp) != num_micro_features_) return false; if (fwrite(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) != kNumCNParams) return false; if (fwrite(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount) return false; return true; } // Creates from the given file. Returns NULL in case of error. // If swap is true, assumes a big/little-endian swap is needed. TrainingSample* TrainingSample::DeSerializeCreate(bool swap, FILE* fp) { TrainingSample* sample = new TrainingSample; if (sample->DeSerialize(swap, fp)) return sample; delete sample; return NULL; } // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. bool TrainingSample::DeSerialize(bool swap, FILE* fp) { if (fread(&class_id_, sizeof(class_id_), 1, fp) != 1) return false; if (fread(&font_id_, sizeof(font_id_), 1, fp) != 1) return false; if (fread(&page_num_, sizeof(page_num_), 1, fp) != 1) return false; if (!bounding_box_.DeSerialize(swap, fp)) return false; if (fread(&num_features_, sizeof(num_features_), 1, fp) != 1) return false; if (fread(&num_micro_features_, sizeof(num_micro_features_), 1, fp) != 1) return false; if (swap) { ReverseN(&class_id_, sizeof(class_id_)); ReverseN(&num_features_, sizeof(num_features_)); ReverseN(&num_micro_features_, sizeof(num_micro_features_)); } delete [] features_; features_ = new INT_FEATURE_STRUCT[num_features_]; if (fread(features_, sizeof(*features_), num_features_, fp) != num_features_) return false; delete [] micro_features_; micro_features_ = new MicroFeature[num_micro_features_]; if (fread(micro_features_, sizeof(*micro_features_), num_micro_features_, fp) != num_micro_features_) return false; if (fread(cn_feature_, sizeof(*cn_feature_), kNumCNParams, fp) != kNumCNParams) return false; if (fread(geo_feature_, sizeof(*geo_feature_), GeoCount, fp) != GeoCount) return false; return true; } // Saves the given features into a TrainingSample. TrainingSample* TrainingSample::CopyFromFeatures( const INT_FX_RESULT_STRUCT& fx_info, const INT_FEATURE_STRUCT* features, int num_features) { TrainingSample* sample = new TrainingSample; sample->num_features_ = num_features; sample->features_ = new INT_FEATURE_STRUCT[num_features]; memcpy(sample->features_, features, num_features * sizeof(features[0])); sample->geo_feature_[GeoBottom] = fx_info.YBottom; sample->geo_feature_[GeoTop] = fx_info.YTop; sample->geo_feature_[GeoWidth] = fx_info.Width; sample->features_are_indexed_ = false; sample->features_are_mapped_ = false; return sample; } // Constructs and returns a copy randomized by the method given by // the randomizer index. If index is out of [0, kSampleRandomSize) then // an exact copy is returned. TrainingSample* TrainingSample::RandomizedCopy(int index) const { TrainingSample* sample = Copy(); if (index >= 0 && index < kSampleRandomSize) { ++index; // Remove the first combination. int yshift = kYShiftValues[index / kSampleScaleSize]; double scaling = kScaleValues[index % kSampleScaleSize]; for (int i = 0; i < num_features_; ++i) { double result = (features_[i].X - kRandomizingCenter) * scaling; result += kRandomizingCenter; sample->features_[i].X = ClipToRange(static_cast(result + 0.5), 0, MAX_UINT8); result = (features_[i].Y - kRandomizingCenter) * scaling; result += kRandomizingCenter + yshift; sample->features_[i].Y = ClipToRange(static_cast(result + 0.5), 0, MAX_UINT8); } } return sample; } // Constructs and returns an exact copy. TrainingSample* TrainingSample::Copy() const { TrainingSample* sample = new TrainingSample; sample->class_id_ = class_id_; sample->font_id_ = font_id_; sample->weight_ = weight_; sample->sample_index_ = sample_index_; sample->num_features_ = num_features_; if (num_features_ > 0) { sample->features_ = new INT_FEATURE_STRUCT[num_features_]; memcpy(sample->features_, features_, num_features_ * sizeof(features_[0])); } sample->num_micro_features_ = num_micro_features_; if (num_micro_features_ > 0) { sample->micro_features_ = new MicroFeature[num_micro_features_]; memcpy(sample->micro_features_, micro_features_, num_micro_features_ * sizeof(micro_features_[0])); } memcpy(sample->cn_feature_, cn_feature_, sizeof(*cn_feature_) * kNumCNParams); memcpy(sample->geo_feature_, geo_feature_, sizeof(*geo_feature_) * GeoCount); return sample; } // Extracts the needed information from the CHAR_DESC_STRUCT. void TrainingSample::ExtractCharDesc(int int_feature_type, int micro_type, int cn_type, int geo_type, CHAR_DESC_STRUCT* char_desc) { // Extract the INT features. if (features_ != NULL) delete [] features_; FEATURE_SET_STRUCT* char_features = char_desc->FeatureSets[int_feature_type]; if (char_features == NULL) { tprintf("Error: no features to train on of type %s\n", kIntFeatureType); num_features_ = 0; features_ = NULL; } else { num_features_ = char_features->NumFeatures; features_ = new INT_FEATURE_STRUCT[num_features_]; for (int f = 0; f < num_features_; ++f) { features_[f].X = static_cast(char_features->Features[f]->Params[IntX]); features_[f].Y = static_cast(char_features->Features[f]->Params[IntY]); features_[f].Theta = static_cast(char_features->Features[f]->Params[IntDir]); features_[f].CP_misses = 0; } } // Extract the Micro features. if (micro_features_ != NULL) delete [] micro_features_; char_features = char_desc->FeatureSets[micro_type]; if (char_features == NULL) { tprintf("Error: no features to train on of type %s\n", kMicroFeatureType); num_micro_features_ = 0; micro_features_ = NULL; } else { num_micro_features_ = char_features->NumFeatures; micro_features_ = new MicroFeature[num_micro_features_]; for (int f = 0; f < num_micro_features_; ++f) { for (int d = 0; d < MFCount; ++d) { micro_features_[f][d] = char_features->Features[f]->Params[d]; } } } // Extract the CN feature. char_features = char_desc->FeatureSets[cn_type]; if (char_features == NULL) { tprintf("Error: no CN feature to train on.\n"); } else { ASSERT_HOST(char_features->NumFeatures == 1); cn_feature_[CharNormY] = char_features->Features[0]->Params[CharNormY]; cn_feature_[CharNormLength] = char_features->Features[0]->Params[CharNormLength]; cn_feature_[CharNormRx] = char_features->Features[0]->Params[CharNormRx]; cn_feature_[CharNormRy] = char_features->Features[0]->Params[CharNormRy]; } // Extract the Geo feature. char_features = char_desc->FeatureSets[geo_type]; if (char_features == NULL) { tprintf("Error: no Geo feature to train on.\n"); } else { ASSERT_HOST(char_features->NumFeatures == 1); geo_feature_[GeoBottom] = char_features->Features[0]->Params[GeoBottom]; geo_feature_[GeoTop] = char_features->Features[0]->Params[GeoTop]; geo_feature_[GeoWidth] = char_features->Features[0]->Params[GeoWidth]; } features_are_indexed_ = false; features_are_mapped_ = false; } // Sets the mapped_features_ from the features_ using the provided // feature_space to the indexed versions of the features. void TrainingSample::IndexFeatures(const IntFeatureSpace& feature_space) { GenericVector indexed_features; feature_space.IndexAndSortFeatures(features_, num_features_, &mapped_features_); features_are_indexed_ = true; features_are_mapped_ = false; } // Sets the mapped_features_ from the features using the provided // feature_map. void TrainingSample::MapFeatures(const IntFeatureMap& feature_map) { GenericVector indexed_features; feature_map.feature_space().IndexAndSortFeatures(features_, num_features_, &indexed_features); feature_map.MapIndexedFeatures(indexed_features, &mapped_features_); features_are_indexed_ = false; features_are_mapped_ = true; } // Returns a pix representing the sample. (Int features only.) Pix* TrainingSample::RenderToPix(const UNICHARSET* unicharset) const { Pix* pix = pixCreate(kIntFeatureExtent, kIntFeatureExtent, 1); for (int f = 0; f < num_features_; ++f) { int start_x = features_[f].X; int start_y = kIntFeatureExtent - features_[f].Y; double dx = cos((features_[f].Theta / 256.0) * 2.0 * PI - PI); double dy = -sin((features_[f].Theta / 256.0) * 2.0 * PI - PI); for (int i = 0; i <= 5; ++i) { int x = static_cast(start_x + dx * i); int y = static_cast(start_y + dy * i); if (x >= 0 && x < 256 && y >= 0 && y < 256) pixSetPixel(pix, x, y, 1); } } if (unicharset != NULL) pixSetText(pix, unicharset->id_to_unichar(class_id_)); return pix; } // Displays the features in the given window with the given color. void TrainingSample::DisplayFeatures(ScrollView::Color color, ScrollView* window) const { #ifndef GRAPHICS_DISABLED for (int f = 0; f < num_features_; ++f) { RenderIntFeature(window, &features_[f], color); } #endif // GRAPHICS_DISABLED } // Returns a pix of the original sample image. The pix is padded all round // by padding wherever possible. // The returned Pix must be pixDestroyed after use. // If the input page_pix is NULL, NULL is returned. Pix* TrainingSample::GetSamplePix(int padding, Pix* page_pix) const { if (page_pix == NULL) return NULL; int page_width = pixGetWidth(page_pix); int page_height = pixGetHeight(page_pix); TBOX padded_box = bounding_box(); padded_box.pad(padding, padding); // Clip the padded_box to the limits of the page TBOX page_box(0, 0, page_width, page_height); padded_box &= page_box; Box* box = boxCreate(page_box.left(), page_height - page_box.top(), page_box.width(), page_box.height()); Pix* sample_pix = pixClipRectangle(page_pix, box, NULL); boxDestroy(&box); return sample_pix; } } // namespace tesseract