/* -*-C-*- ******************************************************************************** * * File: bestfirst.c (Formerly bestfirst.c) * Description: Best first search functions * Author: Mark Seaman, OCR Technology * Created: Mon May 14 11:23:29 1990 * Modified: Tue Jul 30 16:08:47 1991 (Mark Seaman) marks@hpgrlt * Language: C * Package: N/A * Status: Experimental (Do Not Distribute) * * (c) Copyright 1990, Hewlett-Packard Company. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * ***************************************************************************/ /*---------------------------------------------------------------------- I n c l u d e s ---------------------------------------------------------------------*/ // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H #include "config_auto.h" #endif #include #include "bestfirst.h" #include "baseline.h" #include "bitvec.h" #include "callback.h" #include "dict.h" #include "freelist.h" #include "globals.h" #include "heuristic.h" #include "metrics.h" #include "permute.h" #include "pieces.h" #include "plotseg.h" #include "ratngs.h" #include "states.h" #include "stopper.h" #include "structures.h" #include "tordvars.h" #include "unicharset.h" #include "wordclass.h" #include "wordrec.h" void call_caller(); /*---------------------------------------------------------------------- V a r i a b l e s ---------------------------------------------------------------------*/ int num_joints; /* Number of chunks - 1 */ int num_pushed = 0; int num_popped = 0; INT_VAR(wordrec_num_seg_states, 30, "Segmentation states"); double_VAR(wordrec_worst_state, 1, "Worst segmentation state"); /**/ /*---------------------------------------------------------------------- F u n c t i o n s ----------------------------------------------------------------------*/ namespace tesseract { /** * @name best_first_search * * Find the best segmentation by doing a best first search of the * solution space. */ void Wordrec::best_first_search(CHUNKS_RECORD *chunks_record, WERD_CHOICE *best_choice, WERD_CHOICE *raw_choice, STATE *state, DANGERR *fixpt, STATE *best_state) { SEARCH_RECORD *the_search; inT16 keep_going; STATE guided_state; // not used num_joints = chunks_record->ratings->dimension() - 1; the_search = new_search(chunks_record, num_joints, best_choice, raw_choice, state); // The default state is initialized as the best choice. In order to apply // segmentation adjustment, or any other contextual processing in permute, // we give the best choice a poor rating to force the processed raw choice // to be promoted to best choice. the_search->best_choice->set_rating(100000.0); evaluate_state(chunks_record, the_search, fixpt); if (permute_debug) { tprintf("\n\n\n =========== BestFirstSearch ==============\n"); best_choice->print("**Initial BestChoice**"); } #ifndef GRAPHICS_DISABLED save_best_state(chunks_record); #endif start_recording(); FLOAT32 worst_priority = 2.0f * prioritize_state(chunks_record, the_search); if (worst_priority < wordrec_worst_state) worst_priority = wordrec_worst_state; if (segment_debug) { print_state("BestFirstSearch", best_state, num_joints); } guided_state = *state; do { /* Look for answer */ if (!hash_lookup (the_search->closed_states, the_search->this_state)) { if (tord_blob_skip) { free_state (the_search->this_state); break; } guided_state = *(the_search->this_state); keep_going = evaluate_state(chunks_record, the_search, fixpt); hash_add (the_search->closed_states, the_search->this_state); if (!keep_going || (the_search->num_states > wordrec_num_seg_states) || (tord_blob_skip)) { if (segment_debug) tprintf("Breaking best_first_search on keep_going %s numstates %d\n", ((keep_going) ? "T" :"F"), the_search->num_states); free_state (the_search->this_state); break; } FLOAT32 new_worst_priority = 2.0f * prioritize_state(chunks_record, the_search); if (new_worst_priority < worst_priority) { if (segment_debug) tprintf("Lowering WorstPriority %f --> %f\n", worst_priority, new_worst_priority); // Tighten the threshold for admitting new paths as better search // candidates are found. After lowering this threshold, we can safely // popout everything that is worse than this score also. worst_priority = new_worst_priority; } expand_node(worst_priority, chunks_record, the_search); } free_state (the_search->this_state); num_popped++; the_search->this_state = pop_queue (the_search->open_states); if (segment_debug && !the_search->this_state) tprintf("No more states to evalaute after %d evals", num_popped); } while (the_search->this_state); state->part1 = the_search->best_state->part1; state->part2 = the_search->best_state->part2; stop_recording(); if (permute_debug) { tprintf("\n\n\n =========== BestFirstSearch ==============\n"); // best_choice->debug_string(getDict().getUnicharset()).string()); best_choice->print("**Final BestChoice**"); } // save the best_state stats delete_search(the_search); } } // namespace tesseract /** * @name chunks_width * * Return the width of a chunk which is a composed of several blobs * blobs[start_blob..last_blob] inclusively, * whose individual widths and gaps are record in width_record in the form * width_record->num_char = n * width_record->widths[2*n-1] = w0,g0,w1,g1..w(n-1),g(n-1) */ int chunks_width(WIDTH_RECORD *width_record, int start_blob, int last_blob) { int result = 0; for (int x = start_blob * 2; x <= last_blob * 2; x++) result += width_record->widths[x]; return (result); } /** * @name chunks_gap * * Return the width of between the specified chunk and next. */ int chunks_gap(WIDTH_RECORD *width_record, int last_chunk) { return (last_chunk < width_record->num_chars - 1) ? width_record->widths[last_chunk * 2 + 1] : 0; } /** * delete_search * * Terminate the current search and free all the memory involved. */ void delete_search(SEARCH_RECORD *the_search) { float closeness; closeness = (the_search->num_joints ? (hamming_distance(reinterpret_cast(the_search->first_state), reinterpret_cast(the_search->best_state), 2) / (float) the_search->num_joints) : 0.0f); record_search_status (the_search->num_states, the_search->before_best, closeness); free_state (the_search->first_state); free_state (the_search->best_state); free_hash_table (the_search->closed_states); FreeHeapData (the_search->open_states, (void_dest) free_state); memfree(the_search); } namespace tesseract { /** * evaluate_chunks * * A particular word level segmentation has been chosen. Evaluation * this to find the word list that corresponds to it. */ BLOB_CHOICE_LIST_VECTOR *Wordrec::evaluate_chunks(CHUNKS_RECORD *chunks_record, SEARCH_STATE search_state) { BLOB_CHOICE_LIST_VECTOR *char_choices = new BLOB_CHOICE_LIST_VECTOR(); BLOB_CHOICE_LIST *blob_choices; BLOB_CHOICE_IT blob_choice_it; int i; int x = 0; int y; /* Iterate sub-paths */ for (i = 1; i <= search_state[0] + 1; i++) { if (i > search_state[0]) y = count_blobs (chunks_record->chunks) - 1; else y = x + search_state[i]; if (tord_blob_skip) { delete char_choices; return (NULL); } /* Process one square */ /* Classify if needed */ blob_choices = get_piece_rating(chunks_record->ratings, chunks_record->chunks, chunks_record->splits, x, y); if (blob_choices == NULL) { delete char_choices; return (NULL); } /* Add permuted ratings */ blob_choice_it.set_to_list(blob_choices); last_segmentation[i - 1].certainty = blob_choice_it.data()->certainty(); last_segmentation[i - 1].match = blob_choice_it.data()->rating(); last_segmentation[i - 1].width = chunks_width (chunks_record->chunk_widths, x, y); last_segmentation[i - 1].gap = chunks_gap (chunks_record->chunk_widths, y); *char_choices += blob_choices; x = y + 1; } return (char_choices); } /** * @name evaluate_state * * Evaluate the segmentation that is represented by this state in the * best first search. Add this state to the "states_seen" list. */ inT16 Wordrec::evaluate_state(CHUNKS_RECORD *chunks_record, SEARCH_RECORD *the_search, DANGERR *fixpt) { BLOB_CHOICE_LIST_VECTOR *char_choices; SEARCH_STATE chunk_groups; float rating_limit = the_search->best_choice->rating(); inT16 keep_going = TRUE; PIECES_STATE widths; the_search->num_states++; chunk_groups = bin_to_chunks(the_search->this_state, the_search->num_joints); bin_to_pieces (the_search->this_state, the_search->num_joints, widths); getDict().LogNewSegmentation(widths); char_choices = evaluate_chunks(chunks_record, chunk_groups); wordseg_rating_adjust_factor = -1.0f; if (char_choices != NULL && char_choices->length() > 0) { // Compute the segmentation cost and include the cost in word rating. // TODO(dsl): We should change the SEARCH_RECORD to store this cost // from state evaluation and avoid recomputing it here. prioritize_state(chunks_record, the_search); wordseg_rating_adjust_factor = the_search->segcost_bias; getDict().permute_characters(*char_choices, rating_limit, the_search->best_choice, the_search->raw_choice); bool replaced = false; if (getDict().AcceptableChoice(char_choices, the_search->best_choice, *(the_search->raw_choice), fixpt, ASSOCIATOR_CALLER, &replaced)) { keep_going = FALSE; } } wordseg_rating_adjust_factor = -1.0f; #ifndef GRAPHICS_DISABLED if (wordrec_display_segmentations) { display_segmentation (chunks_record->chunks, chunk_groups); if (wordrec_display_segmentations > 1) window_wait(segm_window); } #endif if (rating_limit != the_search->best_choice->rating()) { the_search->before_best = the_search->num_states; the_search->best_state->part1 = the_search->this_state->part1; the_search->best_state->part2 = the_search->this_state->part2; replace_char_widths(chunks_record, chunk_groups); } else if (char_choices != NULL) fixpt->index = -1; if (char_choices != NULL) delete char_choices; memfree(chunk_groups); return (keep_going); } /** * rebuild_current_state * * Evaluate the segmentation that is represented by this state in the * best first search. Add this state to the "states_seen" list. */ BLOB_CHOICE_LIST_VECTOR *Wordrec::rebuild_current_state( TBLOB *blobs, SEAMS seam_list, STATE *state, BLOB_CHOICE_LIST_VECTOR *old_choices, int fx, bool force_rebuild, const WERD_CHOICE &best_choice, const MATRIX *ratings) { // Initialize search_state, num_joints, x, y. int num_joints = array_count(seam_list); #ifndef GRAPHICS_DISABLED if (wordrec_display_segmentations) { print_state("Rebuiling state", state, num_joints); } #endif SEARCH_STATE search_state = bin_to_chunks(state, num_joints); int x = 0; int y; int i; for (i = 1; i <= search_state[0]; i++) { y = x + search_state[i]; x = y + 1; } y = count_blobs (blobs) - 1; // Initialize char_choices, expanded_fragment_lengths: // e.g. if fragment_lengths = {1 1 2 3 1}, // expanded_fragment_lengths_str = {1 1 2 2 3 3 3 1}. BLOB_CHOICE_LIST_VECTOR *char_choices = new BLOB_CHOICE_LIST_VECTOR(); STRING expanded_fragment_lengths_str = ""; bool state_has_fragments = false; const char *fragment_lengths = NULL; if (best_choice.length() > 0) { fragment_lengths = best_choice.fragment_lengths(); } if (fragment_lengths) { for (int i = 0; i < best_choice.length(); ++i) { *char_choices += NULL; if (fragment_lengths[i] > 1) { state_has_fragments = true; } for (int j = 0; j < fragment_lengths[i]; ++j) { expanded_fragment_lengths_str += fragment_lengths[i]; } } } else { for (i = 0; i <= search_state[0]; ++i) { expanded_fragment_lengths_str += (char)1; *char_choices += NULL; } } // Finish early if force_rebuld is false and there are no fragments to merge. if (!force_rebuild && !state_has_fragments) { delete char_choices; memfree(search_state); return old_choices; } // Set up variables for concatenating fragments. const char *word_lengths_ptr = NULL; const char *word_ptr = NULL; if (state_has_fragments) { // Make word_lengths_ptr point to the last element in // best_choice->unichar_lengths(). word_lengths_ptr = best_choice.unichar_lengths().string(); word_lengths_ptr += (strlen(word_lengths_ptr)-1); // Make word_str point to the beginning of the last // unichar in best_choice->unichar_string(). word_ptr = best_choice.unichar_string().string(); word_ptr += (strlen(word_ptr)-*word_lengths_ptr); } const char *expanded_fragment_lengths = expanded_fragment_lengths_str.string(); bool merging_fragment = false; int true_y = -1; char unichar[UNICHAR_LEN + 1]; int fragment_pieces = -1; float rating = 0.0; float certainty = -MAX_FLOAT32; // Populate char_choices list such that it corresponds to search_state. // // If we are rebuilding a state that contains character fragments: // -- combine blobs that belong to character fragments // -- re-classify the blobs to obtain choices list for the merged blob // -- ensure that correct classification appears in the new choices list // NOTE: a choice composed form original fragment choices will be always // added to the new choices list for each character composed from // fragments (even if the choice for the corresponding character appears // in the re-classified choices list of for the newly merged blob). BLOB_CHOICE_IT temp_it; int char_choices_index = char_choices->length() - 1; for (i = search_state[0]; i >= 0; i--) { BLOB_CHOICE_LIST *current_choices = join_blobs_and_classify( blobs, seam_list, x, y, fx, ratings, old_choices); // Combine character fragments. if (expanded_fragment_lengths[i] > 1) { // Start merging character fragments. if (!merging_fragment) { merging_fragment = true; true_y = y; fragment_pieces = expanded_fragment_lengths[i]; rating = 0.0; certainty = -MAX_FLOAT32; strncpy(unichar, word_ptr, *word_lengths_ptr); unichar[*word_lengths_ptr] = '\0'; } // Take into account the fact that we could have joined pieces // since we first recorded the ending point of a fragment (true_y). true_y -= y - x; // Populate fragment with updated values and look for the // fragment with the same values in current_choices. // Update rating and certainty of the character being composed. fragment_pieces--; CHAR_FRAGMENT fragment; fragment.set_all(unichar, fragment_pieces, expanded_fragment_lengths[i]); temp_it.set_to_list(current_choices); for (temp_it.mark_cycle_pt(); !temp_it.cycled_list(); temp_it.forward()) { const CHAR_FRAGMENT *current_fragment = getDict().getUnicharset().get_fragment(temp_it.data()->unichar_id()); if (current_fragment && fragment.equals(current_fragment)) { rating += temp_it.data()->rating(); if (temp_it.data()->certainty() > certainty) { certainty = temp_it.data()->certainty(); } break; } } assert(!temp_it.cycled_list()); // make sure we found the fragment // Free current_choices for the fragmented character. delete current_choices; // Finish composing character from fragments. if (fragment_pieces == 0) { // Populate current_choices with the classification of // the blob merged from blobs of each character fragment. current_choices = join_blobs_and_classify(blobs, seam_list, x, true_y, fx, ratings, NULL); BLOB_CHOICE *merged_choice = new BLOB_CHOICE(getDict().getUnicharset().unichar_to_id(unichar), rating, certainty, 0, NO_PERM); // Insert merged_blob into current_choices, such that current_choices // are still sorted in non-descending order by rating. ASSERT_HOST(!current_choices->empty()); temp_it.set_to_list(current_choices); for (temp_it.mark_cycle_pt(); !temp_it.cycled_list() && merged_choice->rating() > temp_it.data()->rating(); temp_it.forward()); temp_it.add_before_stay_put(merged_choice); // Done merging this fragmented character. merging_fragment = false; } } if (!merging_fragment) { // Get rid of fragments in current_choices. temp_it.set_to_list(current_choices); for (temp_it.mark_cycle_pt(); !temp_it.cycled_list(); temp_it.forward()) { if (getDict().getUnicharset().get_fragment( temp_it.data()->unichar_id())) { delete temp_it.extract(); } } char_choices->set(current_choices, char_choices_index); char_choices_index--; // Update word_ptr and word_lengths_ptr. if (word_lengths_ptr != NULL && word_ptr != NULL) { word_lengths_ptr--; word_ptr -= (*word_lengths_ptr); } } y = x - 1; x = y - search_state[i]; } old_choices->delete_data_pointers(); delete old_choices; memfree(search_state); return (char_choices); } } // namespace tesseract /** * @name expand_node * * Create the states that are attached to this one. Check to see that * each one has not already been visited. If not add it to the priority * queue. */ namespace tesseract { void Wordrec::expand_node(FLOAT32 worst_priority, CHUNKS_RECORD *chunks_record, SEARCH_RECORD *the_search) { STATE old_state; int nodes_added = 0; int x; uinT32 mask = 1 << (the_search->num_joints - 1 - 32); old_state.part1 = the_search->this_state->part1; old_state.part2 = the_search->this_state->part2; // We need to expand the search more intelligently, or we get stuck // with a bad starting segmentation in a long word sequence as in CJK. // Expand a child node only if it is within the global bound, and no // worse than 2x of its parent. // TODO(dsl): There is some redudency here in recomputing the priority, // and in filtering of old_merit and worst_priority. the_search->this_state->part2 = old_state.part2; for (x = the_search->num_joints; x > 32; x--) { the_search->this_state->part1 = mask ^ old_state.part1; if (!hash_lookup (the_search->closed_states, the_search->this_state)) { FLOAT32 new_merit = prioritize_state(chunks_record, the_search); if (segment_debug && permute_debug) { cprintf ("....checking state: %8.3f ", new_merit); print_state ("", the_search->this_state, num_joints); } if (new_merit < worst_priority) { push_queue (the_search->open_states, the_search->this_state, worst_priority, new_merit); nodes_added++; } } mask >>= 1; } if (the_search->num_joints > 32) { mask = 1 << 31; } else { mask = 1 << (the_search->num_joints - 1); } the_search->this_state->part1 = old_state.part1; while (x--) { the_search->this_state->part2 = mask ^ old_state.part2; if (!hash_lookup (the_search->closed_states, the_search->this_state)) { FLOAT32 new_merit = prioritize_state(chunks_record, the_search); if (segment_debug && permute_debug) { cprintf ("....checking state: %8.3f ", new_merit); print_state ("", the_search->this_state, num_joints); } if (new_merit < worst_priority) { push_queue(the_search->open_states, the_search->this_state, worst_priority, new_merit); nodes_added++; } } mask >>= 1; } } } // namespace tesseract /** * @name new_search * * Create and initialize a new search record. */ SEARCH_RECORD *new_search(CHUNKS_RECORD *chunks_record, int num_joints, WERD_CHOICE *best_choice, WERD_CHOICE *raw_choice, STATE *state) { SEARCH_RECORD *this_search; this_search = (SEARCH_RECORD *) memalloc (sizeof (SEARCH_RECORD)); this_search->open_states = MakeHeap (wordrec_num_seg_states * 20); this_search->closed_states = new_hash_table (); if (state) this_search->this_state = new_state (state); else cprintf ("error: bad initial state in new_search\n"); this_search->first_state = new_state (this_search->this_state); this_search->best_state = new_state (this_search->this_state); this_search->best_choice = best_choice; this_search->raw_choice = raw_choice; this_search->num_joints = num_joints; this_search->num_states = 0; this_search->before_best = 0; this_search->segcost_bias = 0; return (this_search); } /** * @name pop_queue * * Get this state from the priority queue. It should be the state that * has the greatest urgency to be evaluated. */ STATE *pop_queue(HEAP *queue) { HEAPENTRY entry; if (GetTopOfHeap (queue, &entry) == OK) { #ifndef GRAPHICS_DISABLED if (wordrec_display_segmentations) { cprintf ("eval state: %8.3f ", entry.Key); print_state ("", (STATE *) entry.Data, num_joints); } #endif return ((STATE *) entry.Data); } else { return (NULL); } } /** * @name push_queue * * Add this state into the priority queue. */ void push_queue(HEAP *queue, STATE *state, FLOAT32 worst_priority, FLOAT32 priority) { HEAPENTRY entry; if (priority < worst_priority) { if (SizeOfHeap (queue) >= MaxSizeOfHeap(queue)) { if (segment_debug) tprintf("Heap is Full\n"); return; } if (segment_debug) tprintf("\tpushing %d node %f\n", num_pushed, priority); entry.Data = (char *) new_state (state); num_pushed++; entry.Key = priority; HeapStore(queue, &entry); } } /** * @name replace_char_widths * * Replace the value of the char_width field in the chunks_record with * the updated width measurements from the last_segmentation. */ void replace_char_widths(CHUNKS_RECORD *chunks_record, SEARCH_STATE state) { WIDTH_RECORD *width_record; int num_blobs; int i; free_widths (chunks_record->char_widths); num_blobs = state[0] + 1; width_record = (WIDTH_RECORD *) memalloc (sizeof (int) * num_blobs * 2); width_record->num_chars = num_blobs; for (i = 0; i < num_blobs; i++) { width_record->widths[2 * i] = last_segmentation[i].width; if (i + 1 < num_blobs) width_record->widths[2 * i + 1] = last_segmentation[i].gap; } chunks_record->char_widths = width_record; } namespace tesseract { BLOB_CHOICE_LIST *Wordrec::join_blobs_and_classify( TBLOB *blobs, SEAMS seam_list, int x, int y, int fx, const MATRIX *ratings, BLOB_CHOICE_LIST_VECTOR *old_choices) { BLOB_CHOICE_LIST *choices = NULL; // First check to see if we can look up the classificaiton // in old_choices (if there is no need to merge blobs). if (x == y && old_choices != NULL && ratings == NULL) { choices = old_choices->get(x); old_choices->set(NULL, x); return choices; } // The ratings matrix filled in by the associator will contain the most // up-to-date classification info. Thus we look up the classification there // first, and only call classify_blob() if the classification is not found. if (ratings != NULL) { BLOB_CHOICE_LIST *choices_ptr = ratings->get(x, y); if (choices_ptr != NOT_CLASSIFIED) { choices = new BLOB_CHOICE_LIST(); choices->deep_copy(choices_ptr, &BLOB_CHOICE::deep_copy); } } if (x != y) { join_pieces(blobs, seam_list, x, y); int blobindex; // current blob TBLOB *p_blob; TBLOB *blob; TBLOB *next_blob; for (blob = blobs, blobindex = 0, p_blob = NULL; blobindex < x; blobindex++) { p_blob = blob; blob = blob->next; } while (blobindex < y) { next_blob = blob->next; blob->next = next_blob->next; oldblob(next_blob); // junk dead blobs blobindex++; } if (choices == NULL) { choices = classify_blob(p_blob, blob, blob->next, NULL, "rebuild", Orange); } } return choices; } } // namespace tesseract