/********************************************************************** * File: normalis.cpp (Formerly denorm.c) * Description: Code for the DENORM class. * Author: Ray Smith * Created: Thu Apr 23 09:22:43 BST 1992 * * (C) Copyright 1992, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #include "mfcpch.h" // Precompiled header include must be first. #include "normalis.h" #include #include "allheaders.h" #include "blobs.h" #include "helpers.h" #include "ocrblock.h" #include "unicharset.h" #include "werd.h" DENORM::DENORM() { Init(); } // TODO(rays) Abolish all non-default constructors. DENORM::DENORM(float x, float scaling, ROW *src) { Init(); x_origin_ = x; // just copy y_origin_ = 0.0f; x_scale_ = y_scale_ = scaling; row_ = src; } DENORM::DENORM(float x, // from same pieces float scaling, double line_m, // default line: y = mx + c double line_c, inT16 seg_count, // no of segments DENORM_SEG *seg_pts, // actual segments BOOL8 using_row, // as baseline ROW *src) { Init(); x_origin_ = x; // just copy y_origin_ = line_c; ASSERT_HOST(line_m == 0.0); x_scale_ = y_scale_ = scaling; SetSegments(seg_pts, seg_count); } DENORM::DENORM(const DENORM &src) { num_segs_ = 0; segs_ = NULL; rotation_ = NULL; *this = src; } DENORM & DENORM::operator=(const DENORM & src) { Clear(); inverse_ = src.inverse_; pix_ = src.pix_; block_ = src.block_; row_ = src.row_; if (src.rotation_ == NULL) rotation_ = NULL; else rotation_ = new FCOORD(*src.rotation_); predecessor_ = src.predecessor_; SetSegments(src.segs_, src.num_segs_); x_origin_ = src.x_origin_; y_origin_ = src.y_origin_; x_scale_ = src.x_scale_; y_scale_ = src.y_scale_; final_xshift_ = src.final_xshift_; final_yshift_ = src.final_yshift_; return *this; } DENORM::~DENORM() { Clear(); } // Setup for a baseline normalization. If there are segs, then they // are used, otherwise, if there is a row, that is used, otherwise the // bottom of the word_box is used for the baseline. void DENORM::SetupBLNormalize(const BLOCK* block, const ROW* row, float x_height, const TBOX& word_box, int num_segs, const DENORM_SEG* segs) { float scale = kBlnXHeight / x_height; float x_origin = (word_box.left() + word_box.right()) / 2.0f; float y_origin = 0.0f; if (num_segs == 0 && row == NULL) { y_origin = word_box.bottom(); } SetupNormalization(block, row, NULL, NULL, segs, num_segs, x_origin, y_origin, scale, scale, 0.0f, static_cast(kBlnBaselineOffset)); } // Initializes the denorm for a transformation. For details see the large // comment in normalis.h. // Arguments: // block: if not NULL, then this is the first transformation, and // block->re_rotation() needs to be used after the Denorm // transformation to get back to the image coords. // row: if not NULL, then row->baseline(x) is added to the y_origin, unless // segs is not NULL and num_segs > 0, in which case they are used. // rotation: if not NULL, apply this rotation after translation to the // origin and scaling. (Usually a classify rotation.) // predecessor: if not NULL, then predecessor has been applied to the // input space and needs to be undone to complete the inverse. // segs: if not NULL and num_segs > 0, then the segs provide the y_origin // and the y_scale at a given source x. // num_segs: the number of segs. // The above pointers are not owned by this DENORM and are assumed to live // longer than this denorm, except rotation, which is deep copied on input. // // x_origin: The x origin which will be mapped to final_xshift in the result. // y_origin: The y origin which will be mapped to final_yshift in the result. // Added to result of row->baseline(x) if not NULL. // // x_scale: scale factor for the x-coordinate. // y_scale: scale factor for the y-coordinate. Ignored if segs is given. // Note that these scale factors apply to the same x and y system as the // x-origin and y-origin apply, ie after any block rotation, but before // the rotation argument is applied. // // final_xshift: The x component of the final translation. // final_yshift: The y component of the final translation. void DENORM::SetupNormalization(const BLOCK* block, const ROW* row, const FCOORD* rotation, const DENORM* predecessor, const DENORM_SEG* segs, int num_segs, float x_origin, float y_origin, float x_scale, float y_scale, float final_xshift, float final_yshift) { Clear(); block_ = block; row_ = row; if (rotation == NULL) rotation_ = NULL; else rotation_ = new FCOORD(*rotation); predecessor_ = predecessor; SetSegments(segs, num_segs); x_origin_ = x_origin; y_origin_ = y_origin; x_scale_ = x_scale; y_scale_ = y_scale; final_xshift_ = final_xshift; final_yshift_ = final_yshift; } // Transforms the given coords one step forward to normalized space, without // using any block rotation or predecessor. void DENORM::LocalNormTransform(const TPOINT& pt, TPOINT* transformed) const { FCOORD src_pt(pt.x, pt.y); FCOORD float_result; LocalNormTransform(src_pt, &float_result); transformed->x = IntCastRounded(float_result.x()); transformed->y = IntCastRounded(float_result.y()); } void DENORM::LocalNormTransform(const FCOORD& pt, FCOORD* transformed) const { FCOORD translated(pt.x() - x_origin_, pt.y() - YOriginAtOrigX(pt.x())); translated.set_x(translated.x() * x_scale_); translated.set_y(translated.y() * YScaleAtOrigX(pt.x())); if (rotation_ != NULL) translated.rotate(*rotation_); transformed->set_x(translated.x() + final_xshift_); transformed->set_y(translated.y() + final_yshift_); } // Transforms the given coords forward to normalized space using the // full transformation sequence defined by the block rotation, the // predecessors, deepest first, and finally this. void DENORM::NormTransform(const TPOINT& pt, TPOINT* transformed) const { FCOORD src_pt(pt.x, pt.y); FCOORD float_result; NormTransform(src_pt, &float_result); transformed->x = IntCastRounded(float_result.x()); transformed->y = IntCastRounded(float_result.y()); } void DENORM::NormTransform(const FCOORD& pt, FCOORD* transformed) const { FCOORD src_pt(pt); if (predecessor_ != NULL) { predecessor_->NormTransform(pt, &src_pt); } else if (block_ != NULL) { FCOORD fwd_rotation(block_->re_rotation().x(), -block_->re_rotation().y()); src_pt.rotate(fwd_rotation); } LocalNormTransform(src_pt, transformed); } // Transforms the given coords one step back to source space, without // using to any block rotation or predecessor. void DENORM::LocalDenormTransform(const TPOINT& pt, TPOINT* original) const { FCOORD src_pt(pt.x, pt.y); FCOORD float_result; LocalDenormTransform(src_pt, &float_result); original->x = IntCastRounded(float_result.x()); original->y = IntCastRounded(float_result.y()); } void DENORM::LocalDenormTransform(const FCOORD& pt, FCOORD* original) const { FCOORD rotated(pt.x() - final_xshift_, pt.y() - final_yshift_); if (rotation_ != NULL) { FCOORD inverse_rotation(rotation_->x(), -rotation_->y()); rotated.rotate(inverse_rotation); } original->set_x(rotated.x() / x_scale_ + x_origin_); float y_scale = y_scale_; if (num_segs_ > 0) y_scale = YScaleAtOrigX(original->x()); original->set_y(rotated.y() / y_scale + YOriginAtOrigX(original->x())); } // Transforms the given coords all the way back to source image space using // the full transformation sequence defined by this and its predecesors // recursively, shallowest first, and finally any block re_rotation. void DENORM::DenormTransform(const TPOINT& pt, TPOINT* original) const { FCOORD src_pt(pt.x, pt.y); FCOORD float_result; DenormTransform(src_pt, &float_result); original->x = IntCastRounded(float_result.x()); original->y = IntCastRounded(float_result.y()); } void DENORM::DenormTransform(const FCOORD& pt, FCOORD* original) const { LocalDenormTransform(pt, original); if (predecessor_ != NULL) { predecessor_->DenormTransform(*original, original); } else if (block_ != NULL) { original->rotate(block_->re_rotation()); } } // Normalize a blob using blob transformations. Less accurate, but // more accurately copies the old way. void DENORM::LocalNormBlob(TBLOB* blob) const { TBOX blob_box = blob->bounding_box(); float x_center = (blob_box.left() + blob_box.right()) / 2.0f; ICOORD translation(-IntCastRounded(x_origin_), -IntCastRounded(YOriginAtOrigX(x_center))); blob->Move(translation); // Note that the old way of scaling only allowed for a single // scale factor. float scale = YScaleAtOrigX(x_center); if (scale != 1.0f) blob->Scale(scale); if (rotation_ != NULL) blob->Rotate(*rotation_); translation.set_x(IntCastRounded(final_xshift_)); translation.set_y(IntCastRounded(final_yshift_)); blob->Move(translation); } // Fills in the x-height range accepted by the given unichar_id, given its // bounding box in the usual baseline-normalized coordinates, with some // initial crude x-height estimate (such as word size) and this denoting the // transformation that was used. Returns false, and an empty range if the // bottom is a mis-fit. Returns true and empty [0, 0] range if the bottom // fits, but the top is impossible. bool DENORM::XHeightRange(int unichar_id, const UNICHARSET& unicharset, const TBOX& bbox, inT16* min_xht, inT16* max_xht) const { // Clip the top and bottom to the limit of normalized feature space. int top = ClipToRange(bbox.top(), 0, kBlnCellHeight - 1); int bottom = ClipToRange(bbox.bottom(), 0, kBlnCellHeight - 1); // A tolerance of yscale corresponds to 1 pixel in the image. double tolerance = y_scale(); int min_bottom, max_bottom, min_top, max_top; unicharset.get_top_bottom(unichar_id, &min_bottom, &max_bottom, &min_top, &max_top); // Default returns indicate a mis-fit. *min_xht = 0; *max_xht = 0; // Chars with a misfitting bottom might be sub/superscript/dropcap, or might // just be wrongly classified. Return an empty range so they have to be // good to be considered. if (bottom < min_bottom - tolerance || bottom > max_bottom + tolerance) { return false; } // To help very high cap/xheight ratio fonts accept the correct x-height, // and to allow the large caps in small caps to accept the xheight of the // small caps, add kBlnBaselineOffset to chars with a maximum max. if (max_top == kBlnCellHeight - 1) max_top += kBlnBaselineOffset; int height = top - kBlnBaselineOffset; double min_height = min_top - kBlnBaselineOffset - tolerance; double max_height = max_top - kBlnBaselineOffset + tolerance; if (min_height <= 0.0) { if (height <= 0 || max_height > 0) *max_xht = MAX_INT16; // Anything will do. } else if (height > 0) { int result = IntCastRounded(height * kBlnXHeight / y_scale() / min_height); *max_xht = static_cast(ClipToRange(result, 0, MAX_INT16)); } if (max_height > 0.0 && height > 0) { int result = IntCastRounded(height * kBlnXHeight / y_scale() / max_height); *min_xht = static_cast(ClipToRange(result, 0, MAX_INT16)); } return true; } // ============== Private Code ====================== // Free allocated memory and clear pointers. void DENORM::Clear() { if (segs_ != NULL) { delete [] segs_; segs_ = NULL; num_segs_ = 0; } if (rotation_ != NULL) { delete rotation_; rotation_ = NULL; } } // Setup default values. void DENORM::Init() { inverse_ = false; pix_ = NULL; block_ = NULL; row_ = NULL; rotation_ = NULL; predecessor_ = NULL; segs_ = NULL; num_segs_ = 0; x_origin_ = 0.0f; y_origin_ = 0.0f; x_scale_ = 1.0f; y_scale_ = 1.0f; final_xshift_ = 0.0f; final_yshift_ = static_cast(kBlnBaselineOffset); } // Returns the y-origin at the original (un-normalized) x. float DENORM::YOriginAtOrigX(float orig_x) const { if (num_segs_ > 0) { const DENORM_SEG* seg = BinarySearchSegment(orig_x); if (seg->ycoord != -MAX_INT32) { return seg->ycoord; } } if (row_ != NULL) return row_->base_line(orig_x) + y_origin_; else return y_origin_; } // Returns the y-scale at the original (un-normalized) x. float DENORM::YScaleAtOrigX(float orig_x) const { if (num_segs_ > 0) { const DENORM_SEG* seg = BinarySearchSegment(orig_x); if (seg->scale_factor > 0.0) return seg->scale_factor; } return y_scale_; } // Compare two segments by xstart for use with qsort(3) and bsearch(3) static int CompareSegByXStart(const DENORM_SEG* a, const DENORM_SEG* b) { if (a->xstart < b->xstart) return -1; else if (a->xstart > b->xstart) return 1; return 0; } // Deep copy the array of segments for use as a y_origin and y_scale. void DENORM::SetSegments(const DENORM_SEG* new_segs, int seg_count) { if (segs_ != NULL) delete [] segs_; if (seg_count > 0) { segs_ = new DENORM_SEG[seg_count]; memcpy(segs_, new_segs, seg_count * sizeof(new_segs[0])); // It is possible, if infrequent that the segments may be out of order. // since we are searching with a binary search, keep them in order. qsort(segs_, num_segs_, sizeof(segs_[0]), reinterpret_cast( &CompareSegByXStart)); } else { num_segs_ = 0; segs_ = NULL; } } // Finds the appropriate segment for a given original x-coord const DENORM_SEG* DENORM::BinarySearchSegment(float orig_x) const { int bottom, top, middle; // binary search bottom = 0; top = num_segs_; do { middle = (bottom + top) / 2; if (segs_[middle].xstart > orig_x) top = middle; else bottom = middle; } while (top - bottom > 1); return &segs_[bottom]; }