/////////////////////////////////////////////////////////////////////// // File: recogtraining.cpp // Description: Functions for ambiguity and parameter training. // Author: Daria Antonova // Created: Mon Aug 13 11:26:43 PDT 2009 // // (C) Copyright 2009, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include "tesseractclass.h" #include "boxread.h" #include "control.h" #include "cutil.h" #include "host.h" #include "ratngs.h" #include "reject.h" #include "stopper.h" namespace tesseract { const inT16 kMaxBoxEdgeDiff = 2; // Sets flags necessary for recognition in the training mode. // Opens and returns the pointer to the output file. FILE *Tesseract::init_recog_training(const STRING &fname) { if (tessedit_ambigs_training) { tessedit_tess_adaption_mode.set_value(0); // turn off adaption tessedit_enable_doc_dict.set_value(0); // turn off document dictionary // Explore all segmentations. getDict().stopper_no_acceptable_choices.set_value(1); } STRING output_fname = fname; const char *lastdot = strrchr(output_fname.string(), '.'); if (lastdot != NULL) output_fname[lastdot - output_fname.string()] = '\0'; output_fname += ".txt"; FILE *output_file = open_file(output_fname.string(), "a+"); return output_file; } // Copies the bounding box from page_res_it->word() to the given TBOX. bool read_t(PAGE_RES_IT *page_res_it, TBOX *tbox) { while (page_res_it->block() != NULL && page_res_it->word() == NULL) page_res_it->forward(); if (page_res_it->word() != NULL) { *tbox = page_res_it->word()->word->bounding_box(); // If tbox->left() is negative, the training image has vertical text and // all the coordinates of bounding boxes of page_res are rotated by 90 // degrees in a counterclockwise direction. We need to rotate the TBOX back // in order to compare with the TBOXes of box files. if (tbox->left() < 0) { tbox->rotate(FCOORD(0.0, -1.0)); } return true; } else { return false; } } // This function takes tif/box pair of files and runs recognition on the image, // while making sure that the word bounds that tesseract identified roughly // match to those specified by the input box file. For each word (ngram in a // single bounding box from the input box file) it outputs the ocred result, // the correct label, rating and certainty. void Tesseract::recog_training_segmented(const STRING &fname, PAGE_RES *page_res, volatile ETEXT_DESC *monitor, FILE *output_file) { STRING box_fname = fname; const char *lastdot = strrchr(box_fname.string(), '.'); if (lastdot != NULL) box_fname[lastdot - box_fname.string()] = '\0'; box_fname += ".box"; // ReadNextBox() will close box_file FILE *box_file = open_file(box_fname.string(), "r"); PAGE_RES_IT page_res_it; page_res_it.page_res = page_res; page_res_it.restart_page(); STRING label; // Process all the words on this page. TBOX tbox; // tesseract-identified box TBOX bbox; // box from the box file bool keep_going; int line_number = 0; int examined_words = 0; do { keep_going = read_t(&page_res_it, &tbox); keep_going &= ReadNextBox(applybox_page, &line_number, box_file, &label, &bbox); // Align bottom left points of the TBOXes. while (keep_going && !NearlyEqual(tbox.bottom(), bbox.bottom(), kMaxBoxEdgeDiff)) { if (bbox.bottom() < tbox.bottom()) { page_res_it.forward(); keep_going = read_t(&page_res_it, &tbox); } else { keep_going = ReadNextBox(applybox_page, &line_number, box_file, &label, &bbox); } } while (keep_going && !NearlyEqual(tbox.left(), bbox.left(), kMaxBoxEdgeDiff)) { if (bbox.left() > tbox.left()) { page_res_it.forward(); keep_going = read_t(&page_res_it, &tbox); } else { keep_going = ReadNextBox(applybox_page, &line_number, box_file, &label, &bbox); } } // OCR the word if top right points of the TBOXes are similar. if (keep_going && NearlyEqual(tbox.right(), bbox.right(), kMaxBoxEdgeDiff) && NearlyEqual(tbox.top(), bbox.top(), kMaxBoxEdgeDiff)) { ambigs_classify_and_output(label.string(), &page_res_it, output_file); examined_words++; } page_res_it.forward(); } while (keep_going); // Set up scripts on all of the words that did not get sent to // ambigs_classify_and_output. They all should have, but if all the // werd_res's don't get uch_sets, tesseract will crash when you try // to iterate over them. :-( int total_words = 0; for (page_res_it.restart_page(); page_res_it.block() != NULL; page_res_it.forward()) { if (page_res_it.word()) { if (page_res_it.word()->uch_set == NULL) page_res_it.word()->SetupFake(unicharset); total_words++; } } if (examined_words < 0.85 * total_words) { tprintf("TODO(antonova): clean up recog_training_segmented; " " It examined only a small fraction of the ambigs image.\n"); } tprintf("recog_training_segmented: examined %d / %d words.\n", examined_words, total_words); } // Helper prints the given set of blob choices. static void PrintPath(int length, const BLOB_CHOICE** blob_choices, const UNICHARSET& unicharset, const char *label, FILE *output_file) { float rating = 0.0f; float certainty = 0.0f; for (int i = 0; i < length; ++i) { const BLOB_CHOICE* blob_choice = blob_choices[i]; fprintf(output_file, "%s", unicharset.id_to_unichar(blob_choice->unichar_id())); rating += blob_choice->rating(); if (certainty > blob_choice->certainty()) certainty = blob_choice->certainty(); } fprintf(output_file, "\t%s\t%.4f\t%.4f\n", label, rating, certainty); } // Helper recursively prints all paths through the ratings matrix, starting // at column col. static void PrintMatrixPaths(int col, int dim, const MATRIX& ratings, int length, const BLOB_CHOICE** blob_choices, const UNICHARSET& unicharset, const char *label, FILE *output_file) { for (int row = col; row < dim && row - col < ratings.bandwidth(); ++row) { if (ratings.get(col, row) != NOT_CLASSIFIED) { BLOB_CHOICE_IT bc_it(ratings.get(col, row)); for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) { blob_choices[length] = bc_it.data(); if (row + 1 < dim) { PrintMatrixPaths(row + 1, dim, ratings, length + 1, blob_choices, unicharset, label, output_file); } else { PrintPath(length + 1, blob_choices, unicharset, label, output_file); } } } } } // Runs classify_word_pass1() on the current word. Outputs Tesseract's // raw choice as a result of the classification. For words labeled with a // single unichar also outputs all alternatives from blob_choices of the // best choice. void Tesseract::ambigs_classify_and_output(const char *label, PAGE_RES_IT* pr_it, FILE *output_file) { // Classify word. fflush(stdout); WordData word_data(*pr_it); SetupWordPassN(1, &word_data); classify_word_and_language(1, pr_it, &word_data); WERD_RES* werd_res = word_data.word; WERD_CHOICE *best_choice = werd_res->best_choice; ASSERT_HOST(best_choice != NULL); // Compute the number of unichars in the label. GenericVector encoding; if (!unicharset.encode_string(label, true, &encoding, NULL, NULL)) { tprintf("Not outputting illegal unichar %s\n", label); return; } // Dump all paths through the ratings matrix (which is normally small). int dim = werd_res->ratings->dimension(); const BLOB_CHOICE** blob_choices = new const BLOB_CHOICE*[dim]; PrintMatrixPaths(0, dim, *werd_res->ratings, 0, blob_choices, unicharset, label, output_file); delete [] blob_choices; } } // namespace tesseract