/////////////////////////////////////////////////////////////////////// // File: language_model.h // Description: Functions that utilize the knowledge about the properties, // structure and statistics of the language to help segmentation // search. // Author: Daria Antonova // Created: Mon Nov 11 11:26:43 PST 2009 // // (C) Copyright 2009, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_WORDREC_LANGUAGE_MODEL_H_ #define TESSERACT_WORDREC_LANGUAGE_MODEL_H_ #include "associate.h" #include "dawg.h" #include "dict.h" #include "fontinfo.h" #include "intproto.h" #include "lm_consistency.h" #include "lm_pain_points.h" #include "lm_state.h" #include "matrix.h" #include "params.h" #include "pageres.h" #include "params_model.h" namespace tesseract { // This class that contains the data structures and functions necessary // to represent and use the knowledge about the language. class LanguageModel { public: // Masks for keeping track of top choices that should not be pruned out. static const LanguageModelFlagsType kSmallestRatingFlag = 0x1; static const LanguageModelFlagsType kLowerCaseFlag = 0x2; static const LanguageModelFlagsType kUpperCaseFlag = 0x4; static const LanguageModelFlagsType kDigitFlag = 0x8; static const LanguageModelFlagsType kXhtConsistentFlag = 0x10; // Denominator for normalizing per-letter ngram cost when deriving // penalty adjustments. static const float kMaxAvgNgramCost; LanguageModel(const UnicityTable *fontinfo_table, Dict *dict); ~LanguageModel(); // Fills the given floats array with features extracted from path represented // by the given ViterbiStateEntry. See ccstruct/params_training_featdef.h // for feature information. // Note: the function assumes that features points to an array of size // PTRAIN_NUM_FEATURE_TYPES. static void ExtractFeaturesFromPath(const ViterbiStateEntry &vse, float features[]); // Updates data structures that are used for the duration of the segmentation // search on the current word; void InitForWord(const WERD_CHOICE *prev_word, bool fixed_pitch, float max_char_wh_ratio, float rating_cert_scale); // Updates language model state of the given BLOB_CHOICE_LIST (from // the ratings matrix) a its parent. Updates pain_points if new // problematic points are found in the segmentation graph. // // At most language_model_viterbi_list_size are kept in each // LanguageModelState.viterbi_state_entries list. // At most language_model_viterbi_list_max_num_prunable of those are prunable // (non-dictionary) paths. // The entries that represent dictionary word paths are kept at the front // of the list. // The list ordered by cost that is computed collectively by several // language model components (currently dawg and ngram components). bool UpdateState( bool just_classified, int curr_col, int curr_row, BLOB_CHOICE_LIST *curr_list, LanguageModelState *parent_node, LMPainPoints *pain_points, WERD_RES *word_res, BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle); // Returns true if an acceptable best choice was discovered. inline bool AcceptableChoiceFound() { return acceptable_choice_found_; } inline void SetAcceptableChoiceFound(bool val) { acceptable_choice_found_ = val; } // Returns the reference to ParamsModel. inline ParamsModel &getParamsModel() { return params_model_; } protected: inline float CertaintyScore(float cert) { if (language_model_use_sigmoidal_certainty) { // cert is assumed to be between 0 and -dict_->certainty_scale. // If you enable language_model_use_sigmoidal_certainty, you // need to adjust language_model_ngram_nonmatch_score as well. cert = -cert / dict_->certainty_scale; return 1.0f / (1.0f + exp(10.0f * cert)); } else { return (-1.0f / cert); } } inline float ComputeAdjustment(int num_problems, float penalty) { if (num_problems == 0) return 0.0f; if (num_problems == 1) return penalty; return (penalty + (language_model_penalty_increment * static_cast(num_problems-1))); } // Computes the adjustment to the ratings sum based on the given // consistency_info. The paths with invalid punctuation, inconsistent // case and character type are penalized proportionally to the number // of inconsistencies on the path. inline float ComputeConsistencyAdjustment( const LanguageModelDawgInfo *dawg_info, const LMConsistencyInfo &consistency_info) { if (dawg_info != NULL) { return ComputeAdjustment(consistency_info.NumInconsistentCase(), language_model_penalty_case); } return (ComputeAdjustment(consistency_info.NumInconsistentPunc(), language_model_penalty_punc) + ComputeAdjustment(consistency_info.NumInconsistentCase(), language_model_penalty_case) + ComputeAdjustment(consistency_info.NumInconsistentChartype(), language_model_penalty_chartype) + ComputeAdjustment(consistency_info.NumInconsistentSpaces(), language_model_penalty_spacing) + (consistency_info.inconsistent_script ? language_model_penalty_script : 0.0f) + (consistency_info.inconsistent_font ? language_model_penalty_font : 0.0f)); } // Returns an adjusted ratings sum that includes inconsistency penalties, // penalties for non-dictionary paths and paths with dips in ngram // probability. float ComputeAdjustedPathCost(ViterbiStateEntry *vse); // Finds the first lower and upper case letter and first digit in curr_list. // Uses the first character in the list in place of empty results. // Returns true if both alpha and digits are found. bool GetTopLowerUpperDigit(BLOB_CHOICE_LIST *curr_list, BLOB_CHOICE **first_lower, BLOB_CHOICE **first_upper, BLOB_CHOICE **first_digit) const; // Forces there to be at least one entry in the overall set of the // viterbi_state_entries of each element of parent_node that has the // top_choice_flag set for lower, upper and digit using the same rules as // GetTopLowerUpperDigit, setting the flag on the first found suitable // candidate, whether or not the flag is set on some other parent. // Returns 1 if both alpha and digits are found among the parents, -1 if no // parents are found at all (a legitimate case), and 0 otherwise. int SetTopParentLowerUpperDigit(LanguageModelState *parent_node) const; // Finds the next ViterbiStateEntry with which the given unichar_id can // combine sensibly, taking into account any mixed alnum/mixed case // situation, and whether this combination has been inspected before. ViterbiStateEntry* GetNextParentVSE( bool just_classified, bool mixed_alnum, const BLOB_CHOICE* bc, LanguageModelFlagsType blob_choice_flags, const UNICHARSET& unicharset, WERD_RES* word_res, ViterbiStateEntry_IT* vse_it, LanguageModelFlagsType* top_choice_flags) const; // Helper function that computes the cost of the path composed of the // path in the given parent ViterbiStateEntry and the given BLOB_CHOICE. // If the new path looks good enough, adds a new ViterbiStateEntry to the // list of viterbi entries in the given BLOB_CHOICE and returns true. bool AddViterbiStateEntry( LanguageModelFlagsType top_choice_flags, float denom, bool word_end, int curr_col, int curr_row, BLOB_CHOICE *b, LanguageModelState *curr_state, ViterbiStateEntry *parent_vse, LMPainPoints *pain_points, WERD_RES *word_res, BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle); // Determines whether a potential entry is a true top choice and // updates changed accordingly. // // Note: The function assumes that b, top_choice_flags and changed // are not NULL. void GenerateTopChoiceInfo(ViterbiStateEntry *new_vse, const ViterbiStateEntry *parent_vse, LanguageModelState *lms); // Calls dict_->LetterIsOk() with DawgArgs initialized from parent_vse and // unichar from b.unichar_id(). Constructs and returns LanguageModelDawgInfo // with updated active dawgs, constraints and permuter. // // Note: the caller is responsible for deleting the returned pointer. LanguageModelDawgInfo *GenerateDawgInfo(bool word_end, int curr_col, int curr_row, const BLOB_CHOICE &b, const ViterbiStateEntry *parent_vse); // Computes p(unichar | parent context) and records it in ngram_cost. // If b.unichar_id() is an unlikely continuation of the parent context // sets found_small_prob to true and returns NULL. // Otherwise creates a new LanguageModelNgramInfo entry containing the // updated context (that includes b.unichar_id() at the end) and returns it. // // Note: the caller is responsible for deleting the returned pointer. LanguageModelNgramInfo *GenerateNgramInfo( const char *unichar, float certainty, float denom, int curr_col, int curr_row, float outline_length, const ViterbiStateEntry *parent_vse); // Computes -(log(prob(classifier)) + log(prob(ngram model))) // for the given unichar in the given context. If there are multiple // unichars at one position - takes the average of their probabilities. // UNICHAR::utf8_step() is used to separate out individual UTF8 characters, // since probability_in_context() can only handle one at a time (while // unicharset might contain ngrams and glyphs composed from multiple UTF8 // characters). float ComputeNgramCost(const char *unichar, float certainty, float denom, const char *context, int *unichar_step_len, bool *found_small_prob, float *ngram_prob); // Computes the normalization factors for the classifier confidences // (used by ComputeNgramCost()). float ComputeDenom(BLOB_CHOICE_LIST *curr_list); // Fills the given consistenty_info based on parent_vse.consistency_info // and on the consistency of the given unichar_id with parent_vse. void FillConsistencyInfo( int curr_col, bool word_end, BLOB_CHOICE *b, ViterbiStateEntry *parent_vse, WERD_RES *word_res, LMConsistencyInfo *consistency_info); // Constructs WERD_CHOICE by recording unichar_ids of the BLOB_CHOICEs // on the path represented by the given BLOB_CHOICE and language model // state entries (lmse, dse). The path is re-constructed by following // the parent pointers in the the lang model state entries). If the // constructed WERD_CHOICE is better than the best/raw choice recorded // in the best_choice_bundle, this function updates the corresponding // fields and sets best_choice_bunldle->updated to true. void UpdateBestChoice(ViterbiStateEntry *vse, LMPainPoints *pain_points, WERD_RES *word_res, BestChoiceBundle *best_choice_bundle, BlamerBundle *blamer_bundle); // Constructs a WERD_CHOICE by tracing parent pointers starting with // the given LanguageModelStateEntry. Returns the constructed word. // Updates best_char_choices, certainties and state if they are not // NULL (best_char_choices and certainties are assumed to have the // length equal to lmse->length). // The caller is responsible for freeing memory associated with the // returned WERD_CHOICE. WERD_CHOICE *ConstructWord(ViterbiStateEntry *vse, WERD_RES *word_res, DANGERR *fixpt, BlamerBundle *blamer_bundle, bool *truth_path); // Wrapper around AssociateUtils::ComputeStats(). inline void ComputeAssociateStats(int col, int row, float max_char_wh_ratio, ViterbiStateEntry *parent_vse, WERD_RES *word_res, AssociateStats *associate_stats) { AssociateUtils::ComputeStats( col, row, (parent_vse != NULL) ? &(parent_vse->associate_stats) : NULL, (parent_vse != NULL) ? parent_vse->length : 0, fixed_pitch_, max_char_wh_ratio, word_res, language_model_debug_level > 2, associate_stats); } // Returns true if the path with such top_choice_flags and dawg_info // could be pruned out (i.e. is neither a system/user/frequent dictionary // nor a top choice path). // In non-space delimited languages all paths can be "somewhat" dictionary // words. In such languages we can not do dictionary-driven path pruning, // so paths with non-empty dawg_info are considered prunable. inline bool PrunablePath(const ViterbiStateEntry &vse) { if (vse.top_choice_flags) return false; if (vse.dawg_info != NULL && (vse.dawg_info->permuter == SYSTEM_DAWG_PERM || vse.dawg_info->permuter == USER_DAWG_PERM || vse.dawg_info->permuter == FREQ_DAWG_PERM)) return false; return true; } // Returns true if the given ViterbiStateEntry represents an acceptable path. inline bool AcceptablePath(const ViterbiStateEntry &vse) { return (vse.dawg_info != NULL || vse.Consistent() || (vse.ngram_info != NULL && !vse.ngram_info->pruned)); } public: // Parameters. INT_VAR_H(language_model_debug_level, 0, "Language model debug level"); BOOL_VAR_H(language_model_ngram_on, false, "Turn on/off the use of character ngram model"); INT_VAR_H(language_model_ngram_order, 8, "Maximum order of the character ngram model"); INT_VAR_H(language_model_viterbi_list_max_num_prunable, 10, "Maximum number of prunable (those for which PrunablePath() is" " true) entries in each viterbi list recorded in BLOB_CHOICEs"); INT_VAR_H(language_model_viterbi_list_max_size, 500, "Maximum size of viterbi lists recorded in BLOB_CHOICEs"); double_VAR_H(language_model_ngram_small_prob, 0.000001, "To avoid overly small denominators use this as the floor" " of the probability returned by the ngram model"); double_VAR_H(language_model_ngram_nonmatch_score, -40.0, "Average classifier score of a non-matching unichar"); BOOL_VAR_H(language_model_ngram_use_only_first_uft8_step, false, "Use only the first UTF8 step of the given string" " when computing log probabilities"); double_VAR_H(language_model_ngram_scale_factor, 0.03, "Strength of the character ngram model relative to the" " character classifier "); double_VAR_H(language_model_ngram_rating_factor, 16.0, "Factor to bring log-probs into the same range as ratings" " when multiplied by outline length "); BOOL_VAR_H(language_model_ngram_space_delimited_language, true, "Words are delimited by space"); INT_VAR_H(language_model_min_compound_length, 3, "Minimum length of compound words"); // Penalties used for adjusting path costs and final word rating. double_VAR_H(language_model_penalty_non_freq_dict_word, 0.1, "Penalty for words not in the frequent word dictionary"); double_VAR_H(language_model_penalty_non_dict_word, 0.15, "Penalty for non-dictionary words"); double_VAR_H(language_model_penalty_punc, 0.2, "Penalty for inconsistent punctuation"); double_VAR_H(language_model_penalty_case, 0.1, "Penalty for inconsistent case"); double_VAR_H(language_model_penalty_script, 0.5, "Penalty for inconsistent script"); double_VAR_H(language_model_penalty_chartype, 0.3, "Penalty for inconsistent character type"); double_VAR_H(language_model_penalty_font, 0.00, "Penalty for inconsistent font"); double_VAR_H(language_model_penalty_spacing, 0.05, "Penalty for inconsistent spacing"); double_VAR_H(language_model_penalty_increment, 0.01, "Penalty increment"); INT_VAR_H(wordrec_display_segmentations, 0, "Display Segmentations"); BOOL_VAR_H(language_model_use_sigmoidal_certainty, false, "Use sigmoidal score for certainty"); protected: // Member Variables. // Temporary DawgArgs struct that is re-used across different words to // avoid dynamic memory re-allocation (should be cleared before each use). DawgArgs *dawg_args_; // Scaling for recovering blob outline length from rating and certainty. float rating_cert_scale_; // The following variables are set at construction time. // Pointer to fontinfo table (not owned by LanguageModel). const UnicityTable *fontinfo_table_; // Pointer to Dict class, that is used for querying the dictionaries // (the pointer is not owned by LanguageModel). Dict *dict_; // TODO(daria): the following variables should become LanguageModel params // when the old code in bestfirst.cpp and heuristic.cpp is deprecated. // // Set to true if we are dealing with fixed pitch text // (set to assume_fixed_pitch_char_segment). bool fixed_pitch_; // Max char width-to-height ratio allowed // (set to segsearch_max_char_wh_ratio). float max_char_wh_ratio_; // The following variables are initialized with InitForWord(). // String representation of the classification of the previous word // (since this is only used by the character ngram model component, // only the last language_model_ngram_order of the word are stored). STRING prev_word_str_; int prev_word_unichar_step_len_; // Active dawg vector. DawgPositionVector *very_beginning_active_dawgs_; // includes continuation DawgPositionVector *beginning_active_dawgs_; // Set to true if acceptable choice was discovered. // Note: it would be nice to use this to terminate the search once an // acceptable choices is found. However we do not do that and once an // acceptable choice is found we finish looking for alternative choices // in the current segmentation graph and then exit the search (no more // classifications are done after an acceptable choice is found). // This is needed in order to let the search find the words very close to // the best choice in rating (e.g. what/What, Cat/cat, etc) and log these // choices. This way the stopper will know that the best choice is not // ambiguous (i.e. there are best choices in the best choice list that have // ratings close to the very best one) and will be less likely to mis-adapt. bool acceptable_choice_found_; // Set to true if a choice representing correct segmentation was explored. bool correct_segmentation_explored_; // Params models containing weights for for computing ViterbiStateEntry costs. ParamsModel params_model_; }; } // namespace tesseract #endif // TESSERACT_WORDREC_LANGUAGE_MODEL_H_