/////////////////////////////////////////////////////////////////////// // File: fullyconnected.h // Description: Simple feed-forward layer with various non-linearities. // Author: Ray Smith // Created: Wed Feb 26 14:46:06 PST 2014 // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_LSTM_FULLYCONNECTED_H_ #define TESSERACT_LSTM_FULLYCONNECTED_H_ #include "network.h" #include "networkscratch.h" namespace tesseract { // C++ Implementation of the Softmax (output) class from lstm.py. class FullyConnected : public Network { public: FullyConnected(const STRING& name, int ni, int no, NetworkType type); virtual ~FullyConnected(); // Returns the shape output from the network given an input shape (which may // be partially unknown ie zero). virtual StaticShape OutputShape(const StaticShape& input_shape) const; virtual STRING spec() const { STRING spec; if (type_ == NT_TANH) spec.add_str_int("Ft", no_); else if (type_ == NT_LOGISTIC) spec.add_str_int("Fs", no_); else if (type_ == NT_RELU) spec.add_str_int("Fr", no_); else if (type_ == NT_LINEAR) spec.add_str_int("Fl", no_); else if (type_ == NT_POSCLIP) spec.add_str_int("Fp", no_); else if (type_ == NT_SYMCLIP) spec.add_str_int("Fs", no_); else if (type_ == NT_SOFTMAX) spec.add_str_int("Fc", no_); else spec.add_str_int("Fm", no_); return spec; } // Changes the type to the given type. Used to commute a softmax to a // non-output type for adding on other networks. void ChangeType(NetworkType type) { type_ = type; } // Suspends/Enables training by setting the training_ flag. Serialize and // DeSerialize only operate on the run-time data if state is false. virtual void SetEnableTraining(TrainingState state); // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. virtual int InitWeights(float range, TRand* randomizer); // Converts a float network to an int network. virtual void ConvertToInt(); // Provides debug output on the weights. virtual void DebugWeights(); // Writes to the given file. Returns false in case of error. virtual bool Serialize(TFile* fp) const; // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. virtual bool DeSerialize(bool swap, TFile* fp); // Runs forward propagation of activations on the input line. // See Network for a detailed discussion of the arguments. virtual void Forward(bool debug, const NetworkIO& input, const TransposedArray* input_transpose, NetworkScratch* scratch, NetworkIO* output); // Components of Forward so FullyConnected can be reused inside LSTM. void SetupForward(const NetworkIO& input, const TransposedArray* input_transpose); void ForwardTimeStep(const double* d_input, const inT8* i_input, int t, double* output_line); // Runs backward propagation of errors on the deltas line. // See Network for a detailed discussion of the arguments. virtual bool Backward(bool debug, const NetworkIO& fwd_deltas, NetworkScratch* scratch, NetworkIO* back_deltas); // Components of Backward so FullyConnected can be reused inside LSTM. void BackwardTimeStep(const NetworkIO& fwd_deltas, int t, double* curr_errors, TransposedArray* errors_t, double* backprop); void FinishBackward(const TransposedArray& errors_t); // Updates the weights using the given learning rate and momentum. // num_samples is the quotient to be used in the adagrad computation iff // use_ada_grad_ is true. virtual void Update(float learning_rate, float momentum, int num_samples); // Sums the products of weight updates in *this and other, splitting into // positive (same direction) in *same and negative (different direction) in // *changed. virtual void CountAlternators(const Network& other, double* same, double* changed) const; protected: // Weight arrays of size [no, ni + 1]. WeightMatrix weights_; // Transposed copy of input used during training of size [ni, width]. TransposedArray source_t_; // Pointer to transposed input stored elsewhere. If not null, this is used // in preference to calculating the transpose and storing it in source_t_. const TransposedArray* external_source_; // Activations from forward pass of size [width, no]. NetworkIO acts_; // Memory of the integer mode input to forward as softmax always outputs // float, so the information is otherwise lost. bool int_mode_; }; } // namespace tesseract. #endif // TESSERACT_LSTM_FULLYCONNECTED_H_