/////////////////////////////////////////////////////////////////////// // File: imagedata.h // Description: Class to hold information about a single multi-page tiff // training file and its corresponding boxes or text file. // Author: Ray Smith // Created: Tue May 28 08:56:06 PST 2013 // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H #include "config_auto.h" #endif #include "imagedata.h" #include "allheaders.h" #include "boxread.h" #include "callcpp.h" #include "helpers.h" #include "tprintf.h" #if defined(__MINGW32__) # include #elif __cplusplus > 199711L // in C++11 # include #endif // Number of documents to read ahead while training. Doesn't need to be very // large. const int kMaxReadAhead = 8; namespace tesseract { WordFeature::WordFeature() : x_(0), y_(0), dir_(0) { } WordFeature::WordFeature(const FCOORD& fcoord, uinT8 dir) : x_(IntCastRounded(fcoord.x())), y_(ClipToRange(IntCastRounded(fcoord.y()), 0, MAX_UINT8)), dir_(dir) { } // Computes the maximum x and y value in the features. void WordFeature::ComputeSize(const GenericVector& features, int* max_x, int* max_y) { *max_x = 0; *max_y = 0; for (int f = 0; f < features.size(); ++f) { if (features[f].x_ > *max_x) *max_x = features[f].x_; if (features[f].y_ > *max_y) *max_y = features[f].y_; } } // Draws the features in the given window. void WordFeature::Draw(const GenericVector& features, ScrollView* window) { #ifndef GRAPHICS_DISABLED for (int f = 0; f < features.size(); ++f) { FCOORD pos(features[f].x_, features[f].y_); FCOORD dir; dir.from_direction(features[f].dir_); dir *= 8.0f; window->SetCursor(IntCastRounded(pos.x() - dir.x()), IntCastRounded(pos.y() - dir.y())); window->DrawTo(IntCastRounded(pos.x() + dir.x()), IntCastRounded(pos.y() + dir.y())); } #endif } // Writes to the given file. Returns false in case of error. bool WordFeature::Serialize(FILE* fp) const { if (fwrite(&x_, sizeof(x_), 1, fp) != 1) return false; if (fwrite(&y_, sizeof(y_), 1, fp) != 1) return false; if (fwrite(&dir_, sizeof(dir_), 1, fp) != 1) return false; return true; } // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. bool WordFeature::DeSerialize(bool swap, FILE* fp) { if (fread(&x_, sizeof(x_), 1, fp) != 1) return false; if (swap) ReverseN(&x_, sizeof(x_)); if (fread(&y_, sizeof(y_), 1, fp) != 1) return false; if (fread(&dir_, sizeof(dir_), 1, fp) != 1) return false; return true; } void FloatWordFeature::FromWordFeatures( const GenericVector& word_features, GenericVector* float_features) { for (int i = 0; i < word_features.size(); ++i) { FloatWordFeature f; f.x = word_features[i].x(); f.y = word_features[i].y(); f.dir = word_features[i].dir(); f.x_bucket = 0; // Will set it later. float_features->push_back(f); } } // Sort function to sort first by x-bucket, then by y. /* static */ int FloatWordFeature::SortByXBucket(const void* v1, const void* v2) { const FloatWordFeature* f1 = reinterpret_cast(v1); const FloatWordFeature* f2 = reinterpret_cast(v2); int x_diff = f1->x_bucket - f2->x_bucket; if (x_diff == 0) return f1->y - f2->y; return x_diff; } ImageData::ImageData() : page_number_(-1), vertical_text_(false) { } // Takes ownership of the pix and destroys it. ImageData::ImageData(bool vertical, Pix* pix) : page_number_(0), vertical_text_(vertical) { SetPix(pix); } ImageData::~ImageData() { } // Builds and returns an ImageData from the basic data. Note that imagedata, // truth_text, and box_text are all the actual file data, NOT filenames. ImageData* ImageData::Build(const char* name, int page_number, const char* lang, const char* imagedata, int imagedatasize, const char* truth_text, const char* box_text) { ImageData* image_data = new ImageData(); image_data->imagefilename_ = name; image_data->page_number_ = page_number; image_data->language_ = lang; // Save the imagedata. image_data->image_data_.init_to_size(imagedatasize, 0); memcpy(&image_data->image_data_[0], imagedata, imagedatasize); if (!image_data->AddBoxes(box_text)) { if (truth_text == NULL || truth_text[0] == '\0') { tprintf("Error: No text corresponding to page %d from image %s!\n", page_number, name); delete image_data; return NULL; } image_data->transcription_ = truth_text; // If we have no boxes, the transcription is in the 0th box_texts_. image_data->box_texts_.push_back(truth_text); // We will create a box for the whole image on PreScale, to save unpacking // the image now. } else if (truth_text != NULL && truth_text[0] != '\0' && image_data->transcription_ != truth_text) { // Save the truth text as it is present and disagrees with the box text. image_data->transcription_ = truth_text; } return image_data; } // Writes to the given file. Returns false in case of error. bool ImageData::Serialize(TFile* fp) const { if (!imagefilename_.Serialize(fp)) return false; if (fp->FWrite(&page_number_, sizeof(page_number_), 1) != 1) return false; if (!image_data_.Serialize(fp)) return false; if (!transcription_.Serialize(fp)) return false; // WARNING: Will not work across different endian machines. if (!boxes_.Serialize(fp)) return false; if (!box_texts_.SerializeClasses(fp)) return false; inT8 vertical = vertical_text_; if (fp->FWrite(&vertical, sizeof(vertical), 1) != 1) return false; return true; } // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. bool ImageData::DeSerialize(bool swap, TFile* fp) { if (!imagefilename_.DeSerialize(swap, fp)) return false; if (fp->FRead(&page_number_, sizeof(page_number_), 1) != 1) return false; if (swap) ReverseN(&page_number_, sizeof(page_number_)); if (!image_data_.DeSerialize(swap, fp)) return false; if (!transcription_.DeSerialize(swap, fp)) return false; // WARNING: Will not work across different endian machines. if (!boxes_.DeSerialize(swap, fp)) return false; if (!box_texts_.DeSerializeClasses(swap, fp)) return false; inT8 vertical = 0; if (fp->FRead(&vertical, sizeof(vertical), 1) != 1) return false; vertical_text_ = vertical != 0; return true; } // As DeSerialize, but only seeks past the data - hence a static method. bool ImageData::SkipDeSerialize(bool swap, TFile* fp) { if (!STRING::SkipDeSerialize(swap, fp)) return false; inT32 page_number; if (fp->FRead(&page_number, sizeof(page_number), 1) != 1) return false; if (!GenericVector::SkipDeSerialize(swap, fp)) return false; if (!STRING::SkipDeSerialize(swap, fp)) return false; if (!GenericVector::SkipDeSerialize(swap, fp)) return false; if (!GenericVector::SkipDeSerializeClasses(swap, fp)) return false; inT8 vertical = 0; return fp->FRead(&vertical, sizeof(vertical), 1) == 1; } // Saves the given Pix as a PNG-encoded string and destroys it. void ImageData::SetPix(Pix* pix) { SetPixInternal(pix, &image_data_); } // Returns the Pix image for *this. Must be pixDestroyed after use. Pix* ImageData::GetPix() const { return GetPixInternal(image_data_); } // Gets anything and everything with a non-NULL pointer, prescaled to a // given target_height (if 0, then the original image height), and aligned. // Also returns (if not NULL) the width and height of the scaled image. // The return value is the scaled Pix, which must be pixDestroyed after use, // and scale_factor (if not NULL) is set to the scale factor that was applied // to the image to achieve the target_height. Pix* ImageData::PreScale(int target_height, int max_height, float* scale_factor, int* scaled_width, int* scaled_height, GenericVector* boxes) const { int input_width = 0; int input_height = 0; Pix* src_pix = GetPix(); ASSERT_HOST(src_pix != NULL); input_width = pixGetWidth(src_pix); input_height = pixGetHeight(src_pix); if (target_height == 0) { target_height = MIN(input_height, max_height); } float im_factor = static_cast(target_height) / input_height; if (scaled_width != NULL) *scaled_width = IntCastRounded(im_factor * input_width); if (scaled_height != NULL) *scaled_height = target_height; // Get the scaled image. Pix* pix = pixScale(src_pix, im_factor, im_factor); if (pix == NULL) { tprintf("Scaling pix of size %d, %d by factor %g made null pix!!\n", input_width, input_height, im_factor); } if (scaled_width != NULL) *scaled_width = pixGetWidth(pix); if (scaled_height != NULL) *scaled_height = pixGetHeight(pix); pixDestroy(&src_pix); if (boxes != NULL) { // Get the boxes. boxes->truncate(0); for (int b = 0; b < boxes_.size(); ++b) { TBOX box = boxes_[b]; box.scale(im_factor); boxes->push_back(box); } if (boxes->empty()) { // Make a single box for the whole image. TBOX box(0, 0, im_factor * input_width, target_height); boxes->push_back(box); } } if (scale_factor != NULL) *scale_factor = im_factor; return pix; } int ImageData::MemoryUsed() const { return image_data_.size(); } // Draws the data in a new window. void ImageData::Display() const { #ifndef GRAPHICS_DISABLED const int kTextSize = 64; // Draw the image. Pix* pix = GetPix(); if (pix == NULL) return; int width = pixGetWidth(pix); int height = pixGetHeight(pix); ScrollView* win = new ScrollView("Imagedata", 100, 100, 2 * (width + 2 * kTextSize), 2 * (height + 4 * kTextSize), width + 10, height + 3 * kTextSize, true); win->Image(pix, 0, height - 1); pixDestroy(&pix); // Draw the boxes. win->Pen(ScrollView::RED); win->Brush(ScrollView::NONE); int text_size = kTextSize; if (!boxes_.empty() && boxes_[0].height() * 2 < text_size) text_size = boxes_[0].height() * 2; win->TextAttributes("Arial", text_size, false, false, false); if (!boxes_.empty()) { for (int b = 0; b < boxes_.size(); ++b) { boxes_[b].plot(win); win->Text(boxes_[b].left(), height + kTextSize, box_texts_[b].string()); } } else { // The full transcription. win->Pen(ScrollView::CYAN); win->Text(0, height + kTextSize * 2, transcription_.string()); } win->Update(); window_wait(win); #endif } // Adds the supplied boxes and transcriptions that correspond to the correct // page number. void ImageData::AddBoxes(const GenericVector& boxes, const GenericVector& texts, const GenericVector& box_pages) { // Copy the boxes and make the transcription. for (int i = 0; i < box_pages.size(); ++i) { if (page_number_ >= 0 && box_pages[i] != page_number_) continue; transcription_ += texts[i]; boxes_.push_back(boxes[i]); box_texts_.push_back(texts[i]); } } // Saves the given Pix as a PNG-encoded string and destroys it. void ImageData::SetPixInternal(Pix* pix, GenericVector* image_data) { l_uint8* data; size_t size; pixWriteMem(&data, &size, pix, IFF_PNG); pixDestroy(&pix); image_data->init_to_size(size, 0); memcpy(&(*image_data)[0], data, size); free(data); } // Returns the Pix image for the image_data. Must be pixDestroyed after use. Pix* ImageData::GetPixInternal(const GenericVector& image_data) { Pix* pix = NULL; if (!image_data.empty()) { // Convert the array to an image. const unsigned char* u_data = reinterpret_cast(&image_data[0]); pix = pixReadMem(u_data, image_data.size()); } return pix; } // Parses the text string as a box file and adds any discovered boxes that // match the page number. Returns false on error. bool ImageData::AddBoxes(const char* box_text) { if (box_text != NULL && box_text[0] != '\0') { GenericVector boxes; GenericVector texts; GenericVector box_pages; if (ReadMemBoxes(page_number_, false, box_text, &boxes, &texts, NULL, &box_pages)) { AddBoxes(boxes, texts, box_pages); return true; } else { tprintf("Error: No boxes for page %d from image %s!\n", page_number_, imagefilename_.string()); } } return false; } // Thread function to call ReCachePages. void* ReCachePagesFunc(void* data) { DocumentData* document_data = reinterpret_cast(data); document_data->ReCachePages(); return NULL; } DocumentData::DocumentData(const STRING& name) : document_name_(name), pages_offset_(-1), total_pages_(-1), memory_used_(0), max_memory_(0), reader_(NULL) {} DocumentData::~DocumentData() { SVAutoLock lock_p(&pages_mutex_); SVAutoLock lock_g(&general_mutex_); } // Reads all the pages in the given lstmf filename to the cache. The reader // is used to read the file. bool DocumentData::LoadDocument(const char* filename, const char* lang, int start_page, inT64 max_memory, FileReader reader) { SetDocument(filename, lang, max_memory, reader); pages_offset_ = start_page; return ReCachePages(); } // Sets up the document, without actually loading it. void DocumentData::SetDocument(const char* filename, const char* lang, inT64 max_memory, FileReader reader) { SVAutoLock lock_p(&pages_mutex_); SVAutoLock lock(&general_mutex_); document_name_ = filename; lang_ = lang; pages_offset_ = -1; max_memory_ = max_memory; reader_ = reader; } // Writes all the pages to the given filename. Returns false on error. bool DocumentData::SaveDocument(const char* filename, FileWriter writer) { SVAutoLock lock(&pages_mutex_); TFile fp; fp.OpenWrite(NULL); if (!pages_.Serialize(&fp) || !fp.CloseWrite(filename, writer)) { tprintf("Serialize failed: %s\n", filename); return false; } return true; } bool DocumentData::SaveToBuffer(GenericVector* buffer) { SVAutoLock lock(&pages_mutex_); TFile fp; fp.OpenWrite(buffer); return pages_.Serialize(&fp); } // Adds the given page data to this document, counting up memory. void DocumentData::AddPageToDocument(ImageData* page) { SVAutoLock lock(&pages_mutex_); pages_.push_back(page); set_memory_used(memory_used() + page->MemoryUsed()); } // If the given index is not currently loaded, loads it using a separate // thread. void DocumentData::LoadPageInBackground(int index) { ImageData* page = NULL; if (IsPageAvailable(index, &page)) return; SVAutoLock lock(&pages_mutex_); if (pages_offset_ == index) return; pages_offset_ = index; pages_.clear(); SVSync::StartThread(ReCachePagesFunc, this); } // Returns a pointer to the page with the given index, modulo the total // number of pages. Blocks until the background load is completed. const ImageData* DocumentData::GetPage(int index) { ImageData* page = NULL; while (!IsPageAvailable(index, &page)) { // If there is no background load scheduled, schedule one now. pages_mutex_.Lock(); bool needs_loading = pages_offset_ != index; pages_mutex_.Unlock(); if (needs_loading) LoadPageInBackground(index); // We can't directly load the page, or the background load will delete it // while the caller is using it, so give it a chance to work. #if __cplusplus > 199711L std::this_thread::sleep_for(std::chrono::seconds(1)); #elif _WIN32 // MSVS Sleep(1000); #else sleep(1); #endif } return page; } // Returns true if the requested page is available, and provides a pointer, // which may be NULL if the document is empty. May block, even though it // doesn't guarantee to return true. bool DocumentData::IsPageAvailable(int index, ImageData** page) { SVAutoLock lock(&pages_mutex_); int num_pages = NumPages(); if (num_pages == 0 || index < 0) { *page = NULL; // Empty Document. return true; } if (num_pages > 0) { index = Modulo(index, num_pages); if (pages_offset_ <= index && index < pages_offset_ + pages_.size()) { *page = pages_[index - pages_offset_]; // Page is available already. return true; } } return false; } // Removes all pages from memory and frees the memory, but does not forget // the document metadata. inT64 DocumentData::UnCache() { SVAutoLock lock(&pages_mutex_); inT64 memory_saved = memory_used(); pages_.clear(); pages_offset_ = -1; set_total_pages(-1); set_memory_used(0); tprintf("Unloaded document %s, saving %d memory\n", document_name_.string(), memory_saved); return memory_saved; } // Locks the pages_mutex_ and Loads as many pages can fit in max_memory_ // starting at index pages_offset_. bool DocumentData::ReCachePages() { SVAutoLock lock(&pages_mutex_); // Read the file. set_total_pages(0); set_memory_used(0); int loaded_pages = 0; pages_.truncate(0); TFile fp; if (!fp.Open(document_name_, reader_) || !PointerVector::DeSerializeSize(false, &fp, &loaded_pages) || loaded_pages <= 0) { tprintf("Deserialize header failed: %s\n", document_name_.string()); return false; } pages_offset_ %= loaded_pages; // Skip pages before the first one we want, and load the rest until max // memory and skip the rest after that. int page; for (page = 0; page < loaded_pages; ++page) { if (page < pages_offset_ || (max_memory_ > 0 && memory_used() > max_memory_)) { if (!PointerVector::DeSerializeSkip(false, &fp)) break; } else { if (!pages_.DeSerializeElement(false, &fp)) break; ImageData* image_data = pages_.back(); if (image_data->imagefilename().length() == 0) { image_data->set_imagefilename(document_name_); image_data->set_page_number(page); } image_data->set_language(lang_); set_memory_used(memory_used() + image_data->MemoryUsed()); } } if (page < loaded_pages) { tprintf("Deserialize failed: %s read %d/%d pages\n", document_name_.string(), page, loaded_pages); pages_.truncate(0); } else { tprintf("Loaded %d/%d pages (%d-%d) of document %s\n", pages_.size(), loaded_pages, pages_offset_, pages_offset_ + pages_.size(), document_name_.string()); } set_total_pages(loaded_pages); return !pages_.empty(); } // A collection of DocumentData that knows roughly how much memory it is using. DocumentCache::DocumentCache(inT64 max_memory) : num_pages_per_doc_(0), max_memory_(max_memory) {} DocumentCache::~DocumentCache() {} // Adds all the documents in the list of filenames, counting memory. // The reader is used to read the files. bool DocumentCache::LoadDocuments(const GenericVector& filenames, const char* lang, CachingStrategy cache_strategy, FileReader reader) { cache_strategy_ = cache_strategy; inT64 fair_share_memory = 0; // In the round-robin case, each DocumentData handles restricting its content // to its fair share of memory. In the sequential case, DocumentCache // determines which DocumentDatas are held entirely in memory. if (cache_strategy_ == CS_ROUND_ROBIN) fair_share_memory = max_memory_ / filenames.size(); for (int arg = 0; arg < filenames.size(); ++arg) { STRING filename = filenames[arg]; DocumentData* document = new DocumentData(filename); document->SetDocument(filename.string(), lang, fair_share_memory, reader); AddToCache(document); } if (!documents_.empty()) { // Try to get the first page now to verify the list of filenames. if (GetPageBySerial(0) != NULL) return true; tprintf("Load of page 0 failed!\n"); } return false; } // Adds document to the cache. bool DocumentCache::AddToCache(DocumentData* data) { inT64 new_memory = data->memory_used(); documents_.push_back(data); return true; } // Finds and returns a document by name. DocumentData* DocumentCache::FindDocument(const STRING& document_name) const { for (int i = 0; i < documents_.size(); ++i) { if (documents_[i]->document_name() == document_name) return documents_[i]; } return NULL; } // Returns the total number of pages in an epoch. For CS_ROUND_ROBIN cache // strategy, could take a long time. int DocumentCache::TotalPages() { if (cache_strategy_ == CS_SEQUENTIAL) { // In sequential mode, we assume each doc has the same number of pages // whether it is true or not. if (num_pages_per_doc_ == 0) GetPageSequential(0); return num_pages_per_doc_ * documents_.size(); } int total_pages = 0; int num_docs = documents_.size(); for (int d = 0; d < num_docs; ++d) { // We have to load a page to make NumPages() valid. documents_[d]->GetPage(0); total_pages += documents_[d]->NumPages(); } return total_pages; } // Returns a page by serial number, selecting them in a round-robin fashion // from all the documents. Highly disk-intensive, but doesn't need samples // to be shuffled between files to begin with. const ImageData* DocumentCache::GetPageRoundRobin(int serial) { int num_docs = documents_.size(); int doc_index = serial % num_docs; const ImageData* doc = documents_[doc_index]->GetPage(serial / num_docs); for (int offset = 1; offset <= kMaxReadAhead && offset < num_docs; ++offset) { doc_index = (serial + offset) % num_docs; int page = (serial + offset) / num_docs; documents_[doc_index]->LoadPageInBackground(page); } return doc; } // Returns a page by serial number, selecting them in sequence from each file. // Requires the samples to be shuffled between the files to give a random or // uniform distribution of data. Less disk-intensive than GetPageRoundRobin. const ImageData* DocumentCache::GetPageSequential(int serial) { int num_docs = documents_.size(); ASSERT_HOST(num_docs > 0); if (num_pages_per_doc_ == 0) { // Use the pages in the first doc as the number of pages in each doc. documents_[0]->GetPage(0); num_pages_per_doc_ = documents_[0]->NumPages(); if (num_pages_per_doc_ == 0) { tprintf("First document cannot be empty!!\n"); ASSERT_HOST(num_pages_per_doc_ > 0); } // Get rid of zero now if we don't need it. if (serial / num_pages_per_doc_ % num_docs > 0) documents_[0]->UnCache(); } int doc_index = serial / num_pages_per_doc_ % num_docs; const ImageData* doc = documents_[doc_index]->GetPage(serial % num_pages_per_doc_); // Count up total memory. Background loading makes it more complicated to // keep a running count. inT64 total_memory = 0; for (int d = 0; d < num_docs; ++d) { total_memory += documents_[d]->memory_used(); } if (total_memory >= max_memory_) { // Find something to un-cache. // If there are more than 3 in front, then serial is from the back reader // of a pair of readers. If we un-cache from in-front-2 to 2-ahead, then // we create a hole between them and then un-caching the backmost occupied // will work for both. int num_in_front = CountNeighbourDocs(doc_index, 1); for (int offset = num_in_front - 2; offset > 1 && total_memory >= max_memory_; --offset) { int next_index = (doc_index + offset) % num_docs; total_memory -= documents_[next_index]->UnCache(); } // If that didn't work, the best solution is to un-cache from the back. If // we take away the document that a 2nd reader is using, it will put it // back and make a hole between. int num_behind = CountNeighbourDocs(doc_index, -1); for (int offset = num_behind; offset < 0 && total_memory >= max_memory_; ++offset) { int next_index = (doc_index + offset + num_docs) % num_docs; total_memory -= documents_[next_index]->UnCache(); } } int next_index = (doc_index + 1) % num_docs; if (!documents_[next_index]->IsCached() && total_memory < max_memory_) { documents_[next_index]->LoadPageInBackground(0); } return doc; } // Helper counts the number of adjacent cached neighbours of index looking in // direction dir, ie index+dir, index+2*dir etc. int DocumentCache::CountNeighbourDocs(int index, int dir) { int num_docs = documents_.size(); for (int offset = dir; abs(offset) < num_docs; offset += dir) { int offset_index = (index + offset + num_docs) % num_docs; if (!documents_[offset_index]->IsCached()) return offset - dir; } return num_docs; } } // namespace tesseract.