// Although this is a trivial-looking test, it exercises a lot of code: // SampleIterator has to correctly iterate over the correct characters, or // it will fail. // The canonical and cloud features computed by TrainingSampleSet need to // be correct, along with the distance caches, organizing samples by font // and class, indexing of features, distance calculations. // IntFeatureDist has to work, or the canonical samples won't work. // Mastertrainer has ability to read tr files and set itself up tested. // Finally the serialize/deserialize test ensures that MasterTrainer, // TrainingSampleSet, TrainingSample can all serialize/deserialize correctly // enough to reproduce the same results. #include #include #include #include "tesseract/ccutil/genericvector.h" #include "tesseract/ccutil/unicharset.h" #include "tesseract/classify/errorcounter.h" #include "tesseract/classify/mastertrainer.h" #include "tesseract/classify/shapeclassifier.h" #include "tesseract/classify/shapetable.h" #include "tesseract/classify/trainingsample.h" #include "tesseract/training/commontraining.h" #include "tesseract/training/tessopt.h" // Commontraining command-line arguments for font_properties, xheights and // unicharset. DECLARE_string(F); DECLARE_string(X); DECLARE_string(U); DECLARE_string(output_trainer); // Specs of the MockClassifier. const int kNumTopNErrs = 10; const int kNumTop2Errs = kNumTopNErrs + 20; const int kNumTop1Errs = kNumTop2Errs + 30; const int kNumTopTopErrs = kNumTop1Errs + 25; const int kNumNonReject = 1000; const int kNumCorrect = kNumNonReject - kNumTop1Errs; // The total number of answers is given by the number of non-rejects plus // all the multiple answers. const int kNumAnswers = kNumNonReject + 2*(kNumTop2Errs - kNumTopNErrs) + (kNumTop1Errs - kNumTop2Errs) + (kNumTopTopErrs - kNumTop1Errs); namespace tesseract { // Mock ShapeClassifier that cheats by looking at the correct answer, and // creates a specific pattern of errors that can be tested. class MockClassifier : public ShapeClassifier { public: explicit MockClassifier(ShapeTable* shape_table) : shape_table_(shape_table), num_done_(0), done_bad_font_(false) { // Add a false font answer to the shape table. We pick a random unichar_id, // add a new shape for it with a false font. Font must actually exist in // the font table, but not match anything in the first 1000 samples. false_unichar_id_ = 67; false_shape_ = shape_table_->AddShape(false_unichar_id_, 25); } virtual ~MockClassifier() {} // Classifies the given [training] sample, writing to results. // If debug is non-zero, then various degrees of classifier dependent debug // information is provided. // If keep_this (a shape index) is >= 0, then the results should always // contain keep_this, and (if possible) anything of intermediate confidence. // The return value is the number of classes saved in results. virtual int ClassifySample(const TrainingSample& sample, Pix* page_pix, int debug, UNICHAR_ID keep_this, GenericVector* results) { results->clear(); // Everything except the first kNumNonReject is a reject. if (++num_done_ > kNumNonReject) return 0; int class_id = sample.class_id(); int font_id = sample.font_id(); int shape_id = shape_table_->FindShape(class_id, font_id); // Get ids of some wrong answers. int wrong_id1 = shape_id > 10 ? shape_id - 1 : shape_id + 1; int wrong_id2 = shape_id > 10 ? shape_id - 2 : shape_id + 2; if (num_done_ <= kNumTopNErrs) { // The first kNumTopNErrs are top-n errors. results->push_back(ShapeRating(wrong_id1, 1.0f)); } else if (num_done_ <= kNumTop2Errs) { // The next kNumTop2Errs - kNumTopNErrs are top-2 errors. results->push_back(ShapeRating(wrong_id1, 1.0f)); results->push_back(ShapeRating(wrong_id2, 0.875f)); results->push_back(ShapeRating(shape_id, 0.75f)); } else if (num_done_ <= kNumTop1Errs) { // The next kNumTop1Errs - kNumTop2Errs are top-1 errors. results->push_back(ShapeRating(wrong_id1, 1.0f)); results->push_back(ShapeRating(shape_id, 0.8f)); } else if (num_done_ <= kNumTopTopErrs) { // The next kNumTopTopErrs - kNumTop1Errs are cases where the actual top // is not correct, but do not count as a top-1 error because the rating // is close enough to the top answer. results->push_back(ShapeRating(wrong_id1, 1.0f)); results->push_back(ShapeRating(shape_id, 0.99f)); } else if (!done_bad_font_ && class_id == false_unichar_id_) { // There is a single character with a bad font. results->push_back(ShapeRating(false_shape_, 1.0f)); done_bad_font_ = true; } else { // Everything else is correct. results->push_back(ShapeRating(shape_id, 1.0f)); } return results->size(); } // Provides access to the ShapeTable that this classifier works with. virtual const ShapeTable* GetShapeTable() const { return shape_table_; } private: // Borrowed pointer to the ShapeTable. ShapeTable* shape_table_; // Unichar_id of a random character that occurs after the first 60 samples. int false_unichar_id_; // Shape index of prepared false answer for false_unichar_id. int false_shape_; // The number of classifications we have processed. int num_done_; // True after the false font has been emitted. bool done_bad_font_; }; } // namespace tesseract namespace { using tesseract::MasterTrainer; using tesseract::Shape; using tesseract::ShapeTable; using tesseract::UnicharAndFonts; const double kMin1lDistance = 0.25; // The fixture for testing Tesseract. class MasterTrainerTest : public testing::Test { protected: string TestDataNameToPath(const string& name) { return file::JoinPath(FLAGS_test_srcdir, "testdata/" + name); } string TessdataPath() { return file::JoinPath(FLAGS_test_srcdir, "tessdata"); } string TmpNameToPath(const string& name) { return file::JoinPath(FLAGS_test_tmpdir, name); } MasterTrainerTest() { shape_table_ = NULL; master_trainer_ = NULL; } ~MasterTrainerTest() { delete master_trainer_; delete shape_table_; } // Initializes the master_trainer_ and shape_table_. // if load_from_tmp, then reloads a master trainer that was saved by a // previous call in which it was false. void LoadMasterTrainer() { FLAGS_output_trainer = TmpNameToPath("tmp_trainer"); FLAGS_F = TestDataNameToPath("font_properties"); FLAGS_X = TestDataNameToPath("eng.xheights"); FLAGS_U = TestDataNameToPath("eng.unicharset"); string tr_file_name(TestDataNameToPath("eng.Arial.exp0.tr")); const char* argv[] = {tr_file_name.c_str() }; int argc = 1; STRING file_prefix; delete master_trainer_; delete shape_table_; shape_table_ = NULL; tessoptind = 0; master_trainer_ = LoadTrainingData(argc, argv, false, &shape_table_, &file_prefix); EXPECT_TRUE(master_trainer_ != NULL); EXPECT_TRUE(shape_table_ != NULL); } // EXPECTs that the distance between I and l in Arial is 0 and that the // distance to 1 is significantly not 0. void VerifyIl1() { // Find the font id for Arial. int font_id = master_trainer_->GetFontInfoId("Arial"); EXPECT_GE(font_id, 0); // Track down the characters we are interested in. int unichar_I = master_trainer_->unicharset().unichar_to_id("I"); EXPECT_GT(unichar_I, 0); int unichar_l = master_trainer_->unicharset().unichar_to_id("l"); EXPECT_GT(unichar_l, 0); int unichar_1 = master_trainer_->unicharset().unichar_to_id("1"); EXPECT_GT(unichar_1, 0); // Now get the shape ids. int shape_I = shape_table_->FindShape(unichar_I, font_id); EXPECT_GE(shape_I, 0); int shape_l = shape_table_->FindShape(unichar_l, font_id); EXPECT_GE(shape_l, 0); int shape_1 = shape_table_->FindShape(unichar_1, font_id); EXPECT_GE(shape_1, 0); float dist_I_l = master_trainer_->ShapeDistance(*shape_table_, shape_I, shape_l); // No tolerance here. We expect that I and l should match exactly. EXPECT_EQ(0.0f, dist_I_l); float dist_l_I = master_trainer_->ShapeDistance(*shape_table_, shape_l, shape_I); // BOTH ways. EXPECT_EQ(0.0f, dist_l_I); // l/1 on the other hand should be distinct. float dist_l_1 = master_trainer_->ShapeDistance(*shape_table_, shape_l, shape_1); EXPECT_GT(dist_l_1, kMin1lDistance); float dist_1_l = master_trainer_->ShapeDistance(*shape_table_, shape_1, shape_l); EXPECT_GT(dist_1_l, kMin1lDistance); // So should I/1. float dist_I_1 = master_trainer_->ShapeDistance(*shape_table_, shape_I, shape_1); EXPECT_GT(dist_I_1, kMin1lDistance); float dist_1_I = master_trainer_->ShapeDistance(*shape_table_, shape_1, shape_I); EXPECT_GT(dist_1_I, kMin1lDistance); } // Objects declared here can be used by all tests in the test case for Foo. ShapeTable* shape_table_; MasterTrainer* master_trainer_; }; // Tests that the MasterTrainer correctly loads its data and reaches the correct // conclusion over the distance between Arial I l and 1. TEST_F(MasterTrainerTest, Il1Test) { // Initialize the master_trainer_ and load the Arial tr file. LoadMasterTrainer(); VerifyIl1(); } // Tests the ErrorCounter using a MockClassifier to check that it counts // error categories correctly. TEST_F(MasterTrainerTest, ErrorCounterTest) { // Initialize the master_trainer_ from the saved tmp file. LoadMasterTrainer(); // Add the space character to the shape_table_ if not already present to // count junk. if (shape_table_->FindShape(0, -1) < 0) shape_table_->AddShape(0, 0); // Make a mock classifier. tesseract::ShapeClassifier* shape_classifier = new tesseract::MockClassifier(shape_table_); // Get the accuracy report. STRING accuracy_report; master_trainer_->TestClassifierOnSamples(tesseract::CT_UNICHAR_TOP1_ERR, 0, false, shape_classifier, &accuracy_report); LOG(INFO) << accuracy_report.string(); string result_string = accuracy_report.string(); std::vector results = absl::StrSplit(result_string, '\t', absl::SkipEmpty()); EXPECT_EQ(tesseract::CT_SIZE + 1, results.size()); int result_values[tesseract::CT_SIZE]; for (int i = 0; i < tesseract::CT_SIZE; ++i) { EXPECT_TRUE(safe_strto32(results[i + 1], &result_values[i])); } // These tests are more-or-less immune to additions to the number of // categories or changes in the training data. int num_samples = master_trainer_->GetSamples()->num_raw_samples(); EXPECT_EQ(kNumCorrect, result_values[tesseract::CT_UNICHAR_TOP_OK]); EXPECT_EQ(1, result_values[tesseract::CT_FONT_ATTR_ERR]); EXPECT_EQ(kNumTopTopErrs, result_values[tesseract::CT_UNICHAR_TOPTOP_ERR]); EXPECT_EQ(kNumTop1Errs, result_values[tesseract::CT_UNICHAR_TOP1_ERR]); EXPECT_EQ(kNumTop2Errs, result_values[tesseract::CT_UNICHAR_TOP2_ERR]); EXPECT_EQ(kNumTopNErrs, result_values[tesseract::CT_UNICHAR_TOPN_ERR]); // Each of the TOPTOP errs also counts as a multi-unichar. EXPECT_EQ(kNumTopTopErrs - kNumTop1Errs, result_values[tesseract::CT_OK_MULTI_UNICHAR]); EXPECT_EQ(num_samples - kNumNonReject, result_values[tesseract::CT_REJECT]); EXPECT_EQ(kNumAnswers, result_values[tesseract::CT_NUM_RESULTS]); delete shape_classifier; } } // namespace.