/////////////////////////////////////////////////////////////////////// // File: plumbing.cpp // Description: Base class for networks that organize other networks // eg series or parallel. // Author: Ray Smith // Created: Mon May 12 08:17:34 PST 2014 // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "plumbing.h" namespace tesseract { // ni_ and no_ will be set by AddToStack. Plumbing::Plumbing(const STRING& name) : Network(NT_PARALLEL, name, 0, 0) { } Plumbing::~Plumbing() { } // Suspends/Enables training by setting the training_ flag. Serialize and // DeSerialize only operate on the run-time data if state is false. void Plumbing::SetEnableTraining(TrainingState state) { Network::SetEnableTraining(state); for (int i = 0; i < stack_.size(); ++i) stack_[i]->SetEnableTraining(state); } // Sets flags that control the action of the network. See NetworkFlags enum // for bit values. void Plumbing::SetNetworkFlags(uinT32 flags) { Network::SetNetworkFlags(flags); for (int i = 0; i < stack_.size(); ++i) stack_[i]->SetNetworkFlags(flags); } // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. // Note that randomizer is a borrowed pointer that should outlive the network // and should not be deleted by any of the networks. // Returns the number of weights initialized. int Plumbing::InitWeights(float range, TRand* randomizer) { num_weights_ = 0; for (int i = 0; i < stack_.size(); ++i) num_weights_ += stack_[i]->InitWeights(range, randomizer); return num_weights_; } // Converts a float network to an int network. void Plumbing::ConvertToInt() { for (int i = 0; i < stack_.size(); ++i) stack_[i]->ConvertToInt(); } // Provides a pointer to a TRand for any networks that care to use it. // Note that randomizer is a borrowed pointer that should outlive the network // and should not be deleted by any of the networks. void Plumbing::SetRandomizer(TRand* randomizer) { for (int i = 0; i < stack_.size(); ++i) stack_[i]->SetRandomizer(randomizer); } // Adds the given network to the stack. void Plumbing::AddToStack(Network* network) { if (stack_.empty()) { ni_ = network->NumInputs(); no_ = network->NumOutputs(); } else if (type_ == NT_SERIES) { // ni is input of first, no output of last, others match output to input. ASSERT_HOST(no_ == network->NumInputs()); no_ = network->NumOutputs(); } else { // All parallel types. Output is sum of outputs, inputs all match. ASSERT_HOST(ni_ == network->NumInputs()); no_ += network->NumOutputs(); } stack_.push_back(network); } // Sets needs_to_backprop_ to needs_backprop and calls on sub-network // according to needs_backprop || any weights in this network. bool Plumbing::SetupNeedsBackprop(bool needs_backprop) { if (IsTraining()) { needs_to_backprop_ = needs_backprop; bool retval = needs_backprop; for (int i = 0; i < stack_.size(); ++i) { if (stack_[i]->SetupNeedsBackprop(needs_backprop)) retval = true; } return retval; } // Frozen networks don't do backprop. needs_to_backprop_ = false; return false; } // Returns an integer reduction factor that the network applies to the // time sequence. Assumes that any 2-d is already eliminated. Used for // scaling bounding boxes of truth data. // WARNING: if GlobalMinimax is used to vary the scale, this will return // the last used scale factor. Call it before any forward, and it will return // the minimum scale factor of the paths through the GlobalMinimax. int Plumbing::XScaleFactor() const { return stack_[0]->XScaleFactor(); } // Provides the (minimum) x scale factor to the network (of interest only to // input units) so they can determine how to scale bounding boxes. void Plumbing::CacheXScaleFactor(int factor) { for (int i = 0; i < stack_.size(); ++i) { stack_[i]->CacheXScaleFactor(factor); } } // Provides debug output on the weights. void Plumbing::DebugWeights() { for (int i = 0; i < stack_.size(); ++i) stack_[i]->DebugWeights(); } // Returns a set of strings representing the layer-ids of all layers below. void Plumbing::EnumerateLayers(const STRING* prefix, GenericVector* layers) const { for (int i = 0; i < stack_.size(); ++i) { STRING layer_name; if (prefix) layer_name = *prefix; layer_name.add_str_int(":", i); if (stack_[i]->IsPlumbingType()) { Plumbing* plumbing = static_cast(stack_[i]); plumbing->EnumerateLayers(&layer_name, layers); } else { layers->push_back(layer_name); } } } // Returns a pointer to the network layer corresponding to the given id. Network* Plumbing::GetLayer(const char* id) const { char* next_id; int index = strtol(id, &next_id, 10); if (index < 0 || index >= stack_.size()) return NULL; if (stack_[index]->IsPlumbingType()) { Plumbing* plumbing = static_cast(stack_[index]); ASSERT_HOST(*next_id == ':'); return plumbing->GetLayer(next_id + 1); } return stack_[index]; } // Returns a pointer to the learning rate for the given layer id. float* Plumbing::LayerLearningRatePtr(const char* id) const { char* next_id; int index = strtol(id, &next_id, 10); if (index < 0 || index >= stack_.size()) return NULL; if (stack_[index]->IsPlumbingType()) { Plumbing* plumbing = static_cast(stack_[index]); ASSERT_HOST(*next_id == ':'); return plumbing->LayerLearningRatePtr(next_id + 1); } if (index < 0 || index >= learning_rates_.size()) return NULL; return &learning_rates_[index]; } // Writes to the given file. Returns false in case of error. bool Plumbing::Serialize(TFile* fp) const { if (!Network::Serialize(fp)) return false; inT32 size = stack_.size(); // Can't use PointerVector::Serialize here as we need a special DeSerialize. if (fp->FWrite(&size, sizeof(size), 1) != 1) return false; for (int i = 0; i < size; ++i) if (!stack_[i]->Serialize(fp)) return false; if ((network_flags_ & NF_LAYER_SPECIFIC_LR) && !learning_rates_.Serialize(fp)) { return false; } return true; } // Reads from the given file. Returns false in case of error. bool Plumbing::DeSerialize(TFile* fp) { stack_.truncate(0); no_ = 0; // We will be modifying this as we AddToStack. inT32 size; if (fp->FReadEndian(&size, sizeof(size), 1) != 1) return false; for (int i = 0; i < size; ++i) { Network* network = CreateFromFile(fp); if (network == NULL) return false; AddToStack(network); } if ((network_flags_ & NF_LAYER_SPECIFIC_LR) && !learning_rates_.DeSerialize(fp)) { return false; } return true; } // Updates the weights using the given learning rate and momentum. // num_samples is the quotient to be used in the adagrad computation iff // use_ada_grad_ is true. void Plumbing::Update(float learning_rate, float momentum, int num_samples) { for (int i = 0; i < stack_.size(); ++i) { if (network_flags_ & NF_LAYER_SPECIFIC_LR) { if (i < learning_rates_.size()) learning_rate = learning_rates_[i]; else learning_rates_.push_back(learning_rate); } if (stack_[i]->IsTraining()) { stack_[i]->Update(learning_rate, momentum, num_samples); } } } // Sums the products of weight updates in *this and other, splitting into // positive (same direction) in *same and negative (different direction) in // *changed. void Plumbing::CountAlternators(const Network& other, double* same, double* changed) const { ASSERT_HOST(other.type() == type_); const Plumbing* plumbing = static_cast(&other); ASSERT_HOST(plumbing->stack_.size() == stack_.size()); for (int i = 0; i < stack_.size(); ++i) stack_[i]->CountAlternators(*plumbing->stack_[i], same, changed); } } // namespace tesseract.