/****************************************************************************** ** Filename: cluster.h ** Purpose: Definition of feature space clustering routines ** Author: Dan Johnson ** History: 5/29/89, DSJ, Created. ** ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ******************************************************************************/ #ifndef CLUSTER_H #define CLUSTER_H #include "kdtree.h" #include "oldlist.h" /*---------------------------------------------------------------------- Types ----------------------------------------------------------------------*/ typedef struct sample { unsigned Clustered:1; // TRUE if included in a higher cluster unsigned Prototype:1; // TRUE if cluster represented by a proto unsigned SampleCount:30; // number of samples in this cluster struct sample *Left; // ptr to left sub-cluster struct sample *Right; // ptr to right sub-cluster inT32 CharID; // identifier of char sample came from FLOAT32 Mean[1]; // mean of cluster - SampleSize floats } CLUSTER; typedef CLUSTER SAMPLE; // can refer to as either sample or cluster typedef enum { spherical, elliptical, mixed, automatic } PROTOSTYLE; typedef struct // parameters to control clustering { PROTOSTYLE ProtoStyle; // specifies types of protos to be made FLOAT32 MinSamples; // min # of samples per proto - % of total FLOAT32 MaxIllegal; // max percentage of samples in a cluster which have // more than 1 feature in that cluster FLOAT32 Independence; // desired independence between dimensions FLOAT64 Confidence; // desired confidence in prototypes created int MagicSamples; // Ideal number of samples in a cluster. } CLUSTERCONFIG; typedef enum { normal, uniform, D_random } DISTRIBUTION; typedef union { FLOAT32 Spherical; FLOAT32 *Elliptical; } FLOATUNION; typedef struct proto { unsigned Significant:1; // TRUE if prototype is significant unsigned Merged:1; // Merged after clustering so do not output // but kept for display purposes. If it has no // samples then it was actually merged. // Otherwise it matched an already significant // cluster. unsigned Style:2; // spherical, elliptical, or mixed unsigned NumSamples:28; // number of samples in the cluster CLUSTER *Cluster; // ptr to cluster which made prototype DISTRIBUTION *Distrib; // different distribution for each dimension FLOAT32 *Mean; // prototype mean FLOAT32 TotalMagnitude; // total magnitude over all dimensions FLOAT32 LogMagnitude; // log base e of TotalMagnitude FLOATUNION Variance; // prototype variance FLOATUNION Magnitude; // magnitude of density function FLOATUNION Weight; // weight of density function } PROTOTYPE; typedef struct { inT16 SampleSize; // number of parameters per sample PARAM_DESC *ParamDesc; // description of each parameter inT32 NumberOfSamples; // total number of samples being clustered KDTREE *KDTree; // for optimal nearest neighbor searching CLUSTER *Root; // ptr to root cluster of cluster tree LIST ProtoList; // list of prototypes inT32 NumChar; // # of characters represented by samples } CLUSTERER; typedef struct { inT32 NumSamples; // number of samples in list inT32 MaxNumSamples; // maximum size of list SAMPLE *Sample[1]; // array of ptrs to sample data structures } SAMPLELIST; // low level cluster tree analysis routines. #define InitSampleSearch(S,C) (((C)==NULL)?(S=NIL):(S=push(NIL,(C)))) /*-------------------------------------------------------------------------- Public Function Prototypes --------------------------------------------------------------------------*/ CLUSTERER *MakeClusterer (inT16 SampleSize, PARAM_DESC ParamDesc[]); SAMPLE *MakeSample (CLUSTERER * Clusterer, FLOAT32 Feature[], inT32 CharID); LIST ClusterSamples(CLUSTERER *Clusterer, CLUSTERCONFIG *Config); void FreeClusterer(CLUSTERER *Clusterer); void FreeProtoList(LIST *ProtoList); void FreePrototype(void *arg); //PROTOTYPE *Prototype); CLUSTER *NextSample(LIST *SearchState); FLOAT32 Mean(PROTOTYPE *Proto, uinT16 Dimension); FLOAT32 StandardDeviation(PROTOTYPE *Proto, uinT16 Dimension); inT32 MergeClusters(inT16 N, PARAM_DESC ParamDesc[], inT32 n1, inT32 n2, FLOAT32 m[], FLOAT32 m1[], FLOAT32 m2[]); //--------------Global Data Definitions and Declarations--------------------------- // define errors that can be trapped #define ALREADYCLUSTERED 4000 #endif