/////////////////////////////////////////////////////////////////////// // File: lstmtraining.cpp // Description: Training program for LSTM-based networks. // Author: Ray Smith // Created: Fri May 03 11:05:06 PST 2013 // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #ifdef GOOGLE_TESSERACT #include "base/commandlineflags.h" #endif #include "commontraining.h" #include "lstmtester.h" #include "lstmtrainer.h" #include "params.h" #include "strngs.h" #include "tprintf.h" #include "unicharset_training_utils.h" INT_PARAM_FLAG(debug_interval, 0, "How often to display the alignment."); STRING_PARAM_FLAG(net_spec, "", "Network specification"); INT_PARAM_FLAG(net_mode, 192, "Controls network behavior."); INT_PARAM_FLAG(perfect_sample_delay, 0, "How many imperfect samples between perfect ones."); DOUBLE_PARAM_FLAG(target_error_rate, 0.01, "Final error rate in percent."); DOUBLE_PARAM_FLAG(weight_range, 0.1, "Range of initial random weights."); DOUBLE_PARAM_FLAG(learning_rate, 10.0e-4, "Weight factor for new deltas."); DOUBLE_PARAM_FLAG(momentum, 0.5, "Decay factor for repeating deltas."); DOUBLE_PARAM_FLAG(adam_beta, 0.999, "Decay factor for repeating deltas."); INT_PARAM_FLAG(max_image_MB, 6000, "Max memory to use for images."); STRING_PARAM_FLAG(continue_from, "", "Existing model to extend"); STRING_PARAM_FLAG(model_output, "lstmtrain", "Basename for output models"); STRING_PARAM_FLAG(train_listfile, "", "File listing training files in lstmf training format."); STRING_PARAM_FLAG(eval_listfile, "", "File listing eval files in lstmf training format."); BOOL_PARAM_FLAG(stop_training, false, "Just convert the training model to a runtime model."); BOOL_PARAM_FLAG(convert_to_int, false, "Convert the recognition model to an integer model."); BOOL_PARAM_FLAG(sequential_training, false, "Use the training files sequentially instead of round-robin."); INT_PARAM_FLAG(append_index, -1, "Index in continue_from Network at which to" " attach the new network defined by net_spec"); BOOL_PARAM_FLAG(debug_network, false, "Get info on distribution of weight values"); INT_PARAM_FLAG(max_iterations, 0, "If set, exit after this many iterations"); STRING_PARAM_FLAG(traineddata, "", "Combined Dawgs/Unicharset/Recoder for language model"); STRING_PARAM_FLAG(old_traineddata, "", "Previous traineddata arg when changing the character set"); // Number of training images to train between calls to MaintainCheckpoints. const int kNumPagesPerBatch = 100; // Apart from command-line flags, input is a collection of lstmf files, that // were previously created using tesseract with the lstm.train config file. // The program iterates over the inputs, feeding the data to the network, // until the error rate reaches a specified target or max_iterations is reached. int main(int argc, char **argv) { ParseArguments(&argc, &argv); // Purify the model name in case it is based on the network string. if (FLAGS_model_output.empty()) { tprintf("Must provide a --model_output!\n"); return 1; } if (FLAGS_traineddata.empty()) { tprintf("Must provide a --traineddata see training wiki\n"); return 1; } STRING model_output = FLAGS_model_output.c_str(); for (int i = 0; i < model_output.length(); ++i) { if (model_output[i] == '[' || model_output[i] == ']') model_output[i] = '-'; if (model_output[i] == '(' || model_output[i] == ')') model_output[i] = '_'; } // Setup the trainer. STRING checkpoint_file = FLAGS_model_output.c_str(); checkpoint_file += "_checkpoint"; STRING checkpoint_bak = checkpoint_file + ".bak"; tesseract::LSTMTrainer trainer( nullptr, nullptr, nullptr, nullptr, FLAGS_model_output.c_str(), checkpoint_file.c_str(), FLAGS_debug_interval, static_cast(FLAGS_max_image_MB) * 1048576); trainer.InitCharSet(FLAGS_traineddata.c_str()); // Reading something from an existing model doesn't require many flags, // so do it now and exit. if (FLAGS_stop_training || FLAGS_debug_network) { if (!trainer.TryLoadingCheckpoint(FLAGS_continue_from.c_str(), nullptr)) { tprintf("Failed to read continue from: %s\n", FLAGS_continue_from.c_str()); return 1; } if (FLAGS_debug_network) { trainer.DebugNetwork(); } else { if (FLAGS_convert_to_int) trainer.ConvertToInt(); if (!trainer.SaveTraineddata(FLAGS_model_output.c_str())) { tprintf("Failed to write recognition model : %s\n", FLAGS_model_output.c_str()); } } return 0; } // Get the list of files to process. if (FLAGS_train_listfile.empty()) { tprintf("Must supply a list of training filenames! --train_listfile\n"); return 1; } GenericVector filenames; if (!tesseract::LoadFileLinesToStrings(FLAGS_train_listfile.c_str(), &filenames)) { tprintf("Failed to load list of training filenames from %s\n", FLAGS_train_listfile.c_str()); return 1; } // Checkpoints always take priority if they are available. if (trainer.TryLoadingCheckpoint(checkpoint_file.string(), nullptr) || trainer.TryLoadingCheckpoint(checkpoint_bak.string(), nullptr)) { tprintf("Successfully restored trainer from %s\n", checkpoint_file.string()); } else { if (!FLAGS_continue_from.empty()) { // Load a past model file to improve upon. if (!trainer.TryLoadingCheckpoint(FLAGS_continue_from.c_str(), FLAGS_append_index >= 0 ? FLAGS_continue_from.c_str() : FLAGS_old_traineddata.c_str())) { tprintf("Failed to continue from: %s\n", FLAGS_continue_from.c_str()); return 1; } tprintf("Continuing from %s\n", FLAGS_continue_from.c_str()); trainer.InitIterations(); } if (FLAGS_continue_from.empty() || FLAGS_append_index >= 0) { if (FLAGS_append_index >= 0) { tprintf("Appending a new network to an old one!!"); if (FLAGS_continue_from.empty()) { tprintf("Must set --continue_from for appending!\n"); return 1; } } // We are initializing from scratch. if (!trainer.InitNetwork(FLAGS_net_spec.c_str(), FLAGS_append_index, FLAGS_net_mode, FLAGS_weight_range, FLAGS_learning_rate, FLAGS_momentum, FLAGS_adam_beta)) { tprintf("Failed to create network from spec: %s\n", FLAGS_net_spec.c_str()); return 1; } trainer.set_perfect_delay(FLAGS_perfect_sample_delay); } } if (!trainer.LoadAllTrainingData( filenames, FLAGS_sequential_training ? tesseract::CS_SEQUENTIAL : tesseract::CS_ROUND_ROBIN)) { tprintf("Load of images failed!!\n"); return 1; } tesseract::LSTMTester tester(static_cast(FLAGS_max_image_MB) * 1048576); tesseract::TestCallback tester_callback = nullptr; if (!FLAGS_eval_listfile.empty()) { if (!tester.LoadAllEvalData(FLAGS_eval_listfile.c_str())) { tprintf("Failed to load eval data from: %s\n", FLAGS_eval_listfile.c_str()); return 1; } tester_callback = NewPermanentTessCallback(&tester, &tesseract::LSTMTester::RunEvalAsync); } do { // Train a few. int iteration = trainer.training_iteration(); for (int target_iteration = iteration + kNumPagesPerBatch; iteration < target_iteration; iteration = trainer.training_iteration()) { trainer.TrainOnLine(&trainer, false); } STRING log_str; trainer.MaintainCheckpoints(tester_callback, &log_str); tprintf("%s\n", log_str.string()); } while (trainer.best_error_rate() > FLAGS_target_error_rate && (trainer.training_iteration() < FLAGS_max_iterations || FLAGS_max_iterations == 0)); delete tester_callback; tprintf("Finished! Error rate = %g\n", trainer.best_error_rate()); return 0; } /* main */