/********************************************************************** * File: applybox.cpp (Formerly applybox.c) * Description: Re segment rows according to box file data * Author: Phil Cheatle * Created: Wed Nov 24 09:11:23 GMT 1993 * * (C) Copyright 1993, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #ifdef _MSC_VER #pragma warning(disable:4244) // Conversion warnings #endif #include #include #ifdef __UNIX__ #include #include #endif #include "allheaders.h" #include "boxread.h" #include "chopper.h" #include "pageres.h" #include "unichar.h" #include "unicharset.h" #include "tesseractclass.h" #include "genericvector.h" // Max number of blobs to classify together in FindSegmentation. const int kMaxGroupSize = 4; // Max fraction of median allowed as deviation in xheight before switching // to median. const double kMaxXHeightDeviationFraction = 0.125; /************************************************************************* * The box file is assumed to contain box definitions, one per line, of the * following format for blob-level boxes: * * and for word/line-level boxes: * WordStr # * NOTES: * The boxes use tesseract coordinates, i.e. 0,0 is at BOTTOM-LEFT. * * is 0-based, and the page number is used for multipage input (tiff). * * In the blob-level form, each line represents a recognizable unit, which may * be several UTF-8 bytes, but there is a bounding box around each recognizable * unit, and no classifier is needed to train in this mode (bootstrapping.) * * In the word/line-level form, the line begins with the literal "WordStr", and * the bounding box bounds either a whole line or a whole word. The recognizable * units in the word/line are listed after the # at the end of the line and * are space delimited, ignoring any original spaces on the line. * Eg. * word -> #w o r d * multi word line -> #m u l t i w o r d l i n e * The recognizable units must be space-delimited in order to allow multiple * unicodes to be used for a single recognizable unit, eg Hindi. * In this mode, the classifier must have been pre-trained with the desired * character set, or it will not be able to find the character segmentations. *************************************************************************/ namespace tesseract { static void clear_any_old_text(BLOCK_LIST *block_list) { BLOCK_IT block_it(block_list); for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) { ROW_IT row_it(block_it.data()->row_list()); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { WERD_IT word_it(row_it.data()->word_list()); for (word_it.mark_cycle_pt(); !word_it.cycled_list(); word_it.forward()) { word_it.data()->set_text(""); } } } } // Applies the box file based on the image name fname, and resegments // the words in the block_list (page), with: // blob-mode: one blob per line in the box file, words as input. // word/line-mode: one blob per space-delimited unit after the #, and one word // per line in the box file. (See comment above for box file format.) // If find_segmentation is true, (word/line mode) then the classifier is used // to re-segment words/lines to match the space-delimited truth string for // each box. In this case, the input box may be for a word or even a whole // text line, and the output words will contain multiple blobs corresponding // to the space-delimited input string. // With find_segmentation false, no classifier is needed, but the chopper // can still be used to correctly segment touching characters with the help // of the input boxes. // In the returned PAGE_RES, the WERD_RES are setup as they would be returned // from normal classification, ie. with a word, chopped_word, rebuild_word, // seam_array, denorm, box_word, and best_state, but NO best_choice or // raw_choice, as they would require a UNICHARSET, which we aim to avoid. // Instead, the correct_text member of WERD_RES is set, and this may be later // converted to a best_choice using CorrectClassifyWords. CorrectClassifyWords // is not required before calling ApplyBoxTraining. PAGE_RES* Tesseract::ApplyBoxes(const STRING& fname, bool find_segmentation, BLOCK_LIST *block_list) { int box_count = 0; int box_failures = 0; FILE* box_file = OpenBoxFile(fname); TBOX box; GenericVector boxes; GenericVector texts, full_texts; bool found_box = true; while (found_box) { int line_number = 0; // Line number of the box file. STRING text, full_text; found_box = ReadNextBox(applybox_page, &line_number, box_file, &text, &box); if (found_box) { ++box_count; MakeBoxFileStr(text.string(), box, applybox_page, &full_text); } else { full_text = ""; } boxes.push_back(box); texts.push_back(text); full_texts.push_back(full_text); } // In word mode, we use the boxes to make a word for each box, but // in blob mode we use the existing words and maximally chop them first. PAGE_RES* page_res = find_segmentation ? NULL : SetupApplyBoxes(boxes, block_list); clear_any_old_text(block_list); for (int i = 0; i < boxes.size() - 1; i++) { bool foundit = false; if (page_res != NULL) { if (i == 0) { foundit = ResegmentCharBox(page_res, NULL, boxes[i], boxes[i + 1], full_texts[i].string()); } else { foundit = ResegmentCharBox(page_res, &boxes[i-1], boxes[i], boxes[i + 1], full_texts[i].string()); } } else { foundit = ResegmentWordBox(block_list, boxes[i], boxes[i + 1], texts[i].string()); } if (!foundit) { box_failures++; ReportFailedBox(i, boxes[i], texts[i].string(), "FAILURE! Couldn't find a matching blob"); } } if (page_res == NULL) { // In word/line mode, we now maximally chop all the words and resegment // them with the classifier. page_res = SetupApplyBoxes(boxes, block_list); ReSegmentByClassification(page_res); } if (applybox_debug > 0) { tprintf("APPLY_BOXES:\n"); tprintf(" Boxes read from boxfile: %6d\n", box_count); if (box_failures > 0) tprintf(" Boxes failed resegmentation: %6d\n", box_failures); } TidyUp(page_res); return page_res; } // Helper computes median xheight in the image. static double MedianXHeight(BLOCK_LIST *block_list) { BLOCK_IT block_it(block_list); STATS xheights(0, block_it.data()->bounding_box().height()); for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) { ROW_IT row_it(block_it.data()->row_list()); for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) { xheights.add(IntCastRounded(row_it.data()->x_height()), 1); } } return xheights.median(); } // Any row xheight that is significantly different from the median is set // to the median. void Tesseract::PreenXHeights(BLOCK_LIST *block_list) { double median_xheight = MedianXHeight(block_list); double max_deviation = kMaxXHeightDeviationFraction * median_xheight; // Strip all fuzzy space markers to simplify the PAGE_RES. BLOCK_IT b_it(block_list); for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOCK* block = b_it.data(); ROW_IT r_it(block->row_list()); for (r_it.mark_cycle_pt(); !r_it.cycled_list(); r_it.forward ()) { ROW* row = r_it.data(); float diff = fabs(row->x_height() - median_xheight); if (diff > max_deviation) { if (applybox_debug) { tprintf("row xheight=%g, but median xheight = %g\n", row->x_height(), median_xheight); } row->set_x_height(static_cast(median_xheight)); } } } } // Builds a PAGE_RES from the block_list in the way required for ApplyBoxes: // All fuzzy spaces are removed, and all the words are maximally chopped. PAGE_RES* Tesseract::SetupApplyBoxes(const GenericVector& boxes, BLOCK_LIST *block_list) { PreenXHeights(block_list); // Strip all fuzzy space markers to simplify the PAGE_RES. BLOCK_IT b_it(block_list); for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOCK* block = b_it.data(); ROW_IT r_it(block->row_list()); for (r_it.mark_cycle_pt(); !r_it.cycled_list(); r_it.forward ()) { ROW* row = r_it.data(); WERD_IT w_it(row->word_list()); for (w_it.mark_cycle_pt(); !w_it.cycled_list(); w_it.forward()) { WERD* word = w_it.data(); if (word->cblob_list()->empty()) { delete w_it.extract(); } else { word->set_flag(W_FUZZY_SP, false); word->set_flag(W_FUZZY_NON, false); } } } } PAGE_RES* page_res = new PAGE_RES(block_list, NULL); PAGE_RES_IT pr_it(page_res); WERD_RES* word_res; while ((word_res = pr_it.word()) != NULL) { MaximallyChopWord(boxes, pr_it.block()->block, pr_it.row()->row, word_res); pr_it.forward(); } return page_res; } // Tests the chopper by exhaustively running chop_one_blob. // The word_res will contain filled chopped_word, seam_array, denorm, // box_word and best_state for the maximally chopped word. void Tesseract::MaximallyChopWord(const GenericVector& boxes, BLOCK* block, ROW* row, WERD_RES* word_res) { if (!word_res->SetupForRecognition(unicharset, this, BestPix(), tessedit_ocr_engine_mode, NULL, classify_bln_numeric_mode, textord_use_cjk_fp_model, poly_allow_detailed_fx, row, block)) { word_res->CloneChoppedToRebuild(); return; } if (chop_debug) { tprintf("Maximally chopping word at:"); word_res->word->bounding_box().print(); } GenericVector blob_choices; ASSERT_HOST(!word_res->chopped_word->blobs.empty()); float rating = static_cast(MAX_INT8); for (int i = 0; i < word_res->chopped_word->NumBlobs(); ++i) { // The rating and certainty are not quite arbitrary. Since // select_blob_to_chop uses the worst certainty to choose, they all have // to be different, so starting with MAX_INT8, subtract 1/8 for each blob // in here, and then divide by e each time they are chopped, which // should guarantee a set of unequal values for the whole tree of blobs // produced, however much chopping is required. The chops are thus only // limited by the ability of the chopper to find suitable chop points, // and not by the value of the certainties. BLOB_CHOICE* choice = new BLOB_CHOICE(0, rating, -rating, -1, -1, 0, 0, 0, 0, BCC_FAKE); blob_choices.push_back(choice); rating -= 0.125f; } const double e = exp(1.0); // The base of natural logs. int blob_number; int right_chop_index = 0; if (!assume_fixed_pitch_char_segment) { // We only chop if the language is not fixed pitch like CJK. SEAM* seam = NULL; while ((seam = chop_one_blob(boxes, blob_choices, word_res, &blob_number)) != NULL) { word_res->InsertSeam(blob_number, seam); BLOB_CHOICE* left_choice = blob_choices[blob_number]; rating = left_choice->rating() / e; left_choice->set_rating(rating); left_choice->set_certainty(-rating); // combine confidence w/ serial # BLOB_CHOICE* right_choice = new BLOB_CHOICE(++right_chop_index, rating - 0.125f, -rating, -1, -1, 0, 0, 0, 0, BCC_FAKE); blob_choices.insert(right_choice, blob_number + 1); } } word_res->CloneChoppedToRebuild(); word_res->FakeClassifyWord(blob_choices.size(), &blob_choices[0]); } // Helper to compute the dispute resolution metric. // Disputed blob resolution. The aim is to give the blob to the most // appropriate boxfile box. Most of the time it is obvious, but if // two boxfile boxes overlap significantly it is not. If a small boxfile // box takes most of the blob, and a large boxfile box does too, then // we want the small boxfile box to get it, but if the small box // is much smaller than the blob, we don't want it to get it. // Details of the disputed blob resolution: // Given a box with area A, and a blob with area B, with overlap area C, // then the miss metric is (A-C)(B-C)/(AB) and the box with minimum // miss metric gets the blob. static double BoxMissMetric(const TBOX& box1, const TBOX& box2) { int overlap_area = box1.intersection(box2).area(); double miss_metric = box1.area()- overlap_area; miss_metric /= box1.area(); miss_metric *= box2.area() - overlap_area; miss_metric /= box2.area(); return miss_metric; } // Gather consecutive blobs that match the given box into the best_state // and corresponding correct_text. // Fights over which box owns which blobs are settled by pre-chopping and // applying the blobs to box or next_box with the least non-overlap. // Returns false if the box was in error, which can only be caused by // failing to find an appropriate blob for a box. // This means that occasionally, blobs may be incorrectly segmented if the // chopper fails to find a suitable chop point. bool Tesseract::ResegmentCharBox(PAGE_RES* page_res, const TBOX *prev_box, const TBOX& box, const TBOX& next_box, const char* correct_text) { if (applybox_debug > 1) { tprintf("\nAPPLY_BOX: in ResegmentCharBox() for %s\n", correct_text); } PAGE_RES_IT page_res_it(page_res); WERD_RES* word_res; for (word_res = page_res_it.word(); word_res != NULL; word_res = page_res_it.forward()) { if (!word_res->box_word->bounding_box().major_overlap(box)) continue; if (applybox_debug > 1) { tprintf("Checking word box:"); word_res->box_word->bounding_box().print(); } int word_len = word_res->box_word->length(); for (int i = 0; i < word_len; ++i) { TBOX char_box = TBOX(); int blob_count = 0; for (blob_count = 0; i + blob_count < word_len; ++blob_count) { TBOX blob_box = word_res->box_word->BlobBox(i + blob_count); if (!blob_box.major_overlap(box)) break; if (word_res->correct_text[i + blob_count].length() > 0) break; // Blob is claimed already. double current_box_miss_metric = BoxMissMetric(blob_box, box); double next_box_miss_metric = BoxMissMetric(blob_box, next_box); if (applybox_debug > 2) { tprintf("Checking blob:"); blob_box.print(); tprintf("Current miss metric = %g, next = %g\n", current_box_miss_metric, next_box_miss_metric); } if (current_box_miss_metric > next_box_miss_metric) break; // Blob is a better match for next box. char_box += blob_box; } if (blob_count > 0) { if (applybox_debug > 1) { tprintf("Index [%d, %d) seem good.\n", i, i + blob_count); } if (!char_box.almost_equal(box, 3) && (box.x_gap(next_box) < -3 || (prev_box != NULL && prev_box->x_gap(box) < -3))) { return false; } // We refine just the box_word, best_state and correct_text here. // The rebuild_word is made in TidyUp. // blob_count blobs are put together to match the box. Merge the // box_word boxes, save the blob_count in the state and the text. word_res->box_word->MergeBoxes(i, i + blob_count); word_res->best_state[i] = blob_count; word_res->correct_text[i] = correct_text; if (applybox_debug > 2) { tprintf("%d Blobs match: blob box:", blob_count); word_res->box_word->BlobBox(i).print(); tprintf("Matches box:"); box.print(); tprintf("With next box:"); next_box.print(); } // Eliminated best_state and correct_text entries for the consumed // blobs. for (int j = 1; j < blob_count; ++j) { word_res->best_state.remove(i + 1); word_res->correct_text.remove(i + 1); } // Assume that no box spans multiple source words, so we are done with // this box. if (applybox_debug > 1) { tprintf("Best state = "); for (int j = 0; j < word_res->best_state.size(); ++j) { tprintf("%d ", word_res->best_state[j]); } tprintf("\n"); tprintf("Correct text = [[ "); for (int j = 0; j < word_res->correct_text.size(); ++j) { tprintf("%s ", word_res->correct_text[j].string()); } tprintf("]]\n"); } return true; } } } if (applybox_debug > 0) { tprintf("FAIL!\n"); } return false; // Failure. } // Consume all source blobs that strongly overlap the given box, // putting them into a new word, with the correct_text label. // Fights over which box owns which blobs are settled by // applying the blobs to box or next_box with the least non-overlap. // Returns false if the box was in error, which can only be caused by // failing to find an overlapping blob for a box. bool Tesseract::ResegmentWordBox(BLOCK_LIST *block_list, const TBOX& box, const TBOX& next_box, const char* correct_text) { if (applybox_debug > 1) { tprintf("\nAPPLY_BOX: in ResegmentWordBox() for %s\n", correct_text); } WERD* new_word = NULL; BLOCK_IT b_it(block_list); for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOCK* block = b_it.data(); if (!box.major_overlap(block->bounding_box())) continue; ROW_IT r_it(block->row_list()); for (r_it.mark_cycle_pt(); !r_it.cycled_list(); r_it.forward()) { ROW* row = r_it.data(); if (!box.major_overlap(row->bounding_box())) continue; WERD_IT w_it(row->word_list()); for (w_it.mark_cycle_pt(); !w_it.cycled_list(); w_it.forward()) { WERD* word = w_it.data(); if (applybox_debug > 2) { tprintf("Checking word:"); word->bounding_box().print(); } if (word->text() != NULL && word->text()[0] != '\0') continue; // Ignore words that are already done. if (!box.major_overlap(word->bounding_box())) continue; C_BLOB_IT blob_it(word->cblob_list()); for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) { C_BLOB* blob = blob_it.data(); TBOX blob_box = blob->bounding_box(); if (!blob_box.major_overlap(box)) continue; double current_box_miss_metric = BoxMissMetric(blob_box, box); double next_box_miss_metric = BoxMissMetric(blob_box, next_box); if (applybox_debug > 2) { tprintf("Checking blob:"); blob_box.print(); tprintf("Current miss metric = %g, next = %g\n", current_box_miss_metric, next_box_miss_metric); } if (current_box_miss_metric > next_box_miss_metric) continue; // Blob is a better match for next box. if (applybox_debug > 2) { tprintf("Blob match: blob:"); blob_box.print(); tprintf("Matches box:"); box.print(); tprintf("With next box:"); next_box.print(); } if (new_word == NULL) { // Make a new word with a single blob. new_word = word->shallow_copy(); new_word->set_text(correct_text); w_it.add_to_end(new_word); } C_BLOB_IT new_blob_it(new_word->cblob_list()); new_blob_it.add_to_end(blob_it.extract()); } } } } if (new_word == NULL && applybox_debug > 0) tprintf("FAIL!\n"); return new_word != NULL; } // Resegments the words by running the classifier in an attempt to find the // correct segmentation that produces the required string. void Tesseract::ReSegmentByClassification(PAGE_RES* page_res) { PAGE_RES_IT pr_it(page_res); WERD_RES* word_res; for (; (word_res = pr_it.word()) != NULL; pr_it.forward()) { WERD* word = word_res->word; if (word->text() == NULL || word->text()[0] == '\0') continue; // Ignore words that have no text. // Convert the correct text to a vector of UNICHAR_ID GenericVector target_text; if (!ConvertStringToUnichars(word->text(), &target_text)) { tprintf("APPLY_BOX: FAILURE: can't find class_id for '%s'\n", word->text()); pr_it.DeleteCurrentWord(); continue; } if (!FindSegmentation(target_text, word_res)) { tprintf("APPLY_BOX: FAILURE: can't find segmentation for '%s'\n", word->text()); pr_it.DeleteCurrentWord(); continue; } } } // Converts the space-delimited string of utf8 text to a vector of UNICHAR_ID. // Returns false if an invalid UNICHAR_ID is encountered. bool Tesseract::ConvertStringToUnichars(const char* utf8, GenericVector* class_ids) { for (int step = 0; *utf8 != '\0'; utf8 += step) { const char* next_space = strchr(utf8, ' '); if (next_space == NULL) next_space = utf8 + strlen(utf8); step = next_space - utf8; UNICHAR_ID class_id = unicharset.unichar_to_id(utf8, step); if (class_id == INVALID_UNICHAR_ID) { return false; } while (utf8[step] == ' ') ++step; class_ids->push_back(class_id); } return true; } // Resegments the word to achieve the target_text from the classifier. // Returns false if the re-segmentation fails. // Uses brute-force combination of up to kMaxGroupSize adjacent blobs, and // applies a full search on the classifier results to find the best classified // segmentation. As a compromise to obtain better recall, 1-1 ambiguity // substitutions ARE used. bool Tesseract::FindSegmentation(const GenericVector& target_text, WERD_RES* word_res) { // Classify all required combinations of blobs and save results in choices. int word_length = word_res->box_word->length(); GenericVector* choices = new GenericVector[word_length]; for (int i = 0; i < word_length; ++i) { for (int j = 1; j <= kMaxGroupSize && i + j <= word_length; ++j) { BLOB_CHOICE_LIST* match_result = classify_piece( word_res->seam_array, i, i + j - 1, "Applybox", word_res->chopped_word, word_res->blamer_bundle); if (applybox_debug > 2) { tprintf("%d+%d:", i, j); print_ratings_list("Segment:", match_result, unicharset); } choices[i].push_back(match_result); } } // Search the segmentation graph for the target text. Must be an exact // match. Using wildcards makes it difficult to find the correct // segmentation even when it is there. word_res->best_state.clear(); GenericVector search_segmentation; float best_rating = 0.0f; SearchForText(choices, 0, word_length, target_text, 0, 0.0f, &search_segmentation, &best_rating, &word_res->best_state); for (int i = 0; i < word_length; ++i) choices[i].delete_data_pointers(); delete [] choices; if (word_res->best_state.empty()) { // Build the original segmentation and if it is the same length as the // truth, assume it will do. int blob_count = 1; for (int s = 0; s < word_res->seam_array.size(); ++s) { SEAM* seam = word_res->seam_array[s]; if (seam->split1 == NULL) { word_res->best_state.push_back(blob_count); blob_count = 1; } else { ++blob_count; } } word_res->best_state.push_back(blob_count); if (word_res->best_state.size() != target_text.size()) { word_res->best_state.clear(); // No good. Original segmentation bad size. return false; } } word_res->correct_text.clear(); for (int i = 0; i < target_text.size(); ++i) { word_res->correct_text.push_back( STRING(unicharset.id_to_unichar(target_text[i]))); } return true; } // Recursive helper to find a match to the target_text (from text_index // position) in the choices (from choices_pos position). // Choices is an array of GenericVectors, of length choices_length, with each // element representing a starting position in the word, and the // GenericVector holding classification results for a sequence of consecutive // blobs, with index 0 being a single blob, index 1 being 2 blobs etc. void Tesseract::SearchForText(const GenericVector* choices, int choices_pos, int choices_length, const GenericVector& target_text, int text_index, float rating, GenericVector* segmentation, float* best_rating, GenericVector* best_segmentation) { const UnicharAmbigsVector& table = getDict().getUnicharAmbigs().dang_ambigs(); for (int length = 1; length <= choices[choices_pos].size(); ++length) { // Rating of matching choice or worst choice if no match. float choice_rating = 0.0f; // Find the corresponding best BLOB_CHOICE. BLOB_CHOICE_IT choice_it(choices[choices_pos][length - 1]); for (choice_it.mark_cycle_pt(); !choice_it.cycled_list(); choice_it.forward()) { BLOB_CHOICE* choice = choice_it.data(); choice_rating = choice->rating(); UNICHAR_ID class_id = choice->unichar_id(); if (class_id == target_text[text_index]) { break; } // Search ambigs table. if (class_id < table.size() && table[class_id] != NULL) { AmbigSpec_IT spec_it(table[class_id]); for (spec_it.mark_cycle_pt(); !spec_it.cycled_list(); spec_it.forward()) { const AmbigSpec *ambig_spec = spec_it.data(); // We'll only do 1-1. if (ambig_spec->wrong_ngram[1] == INVALID_UNICHAR_ID && ambig_spec->correct_ngram_id == target_text[text_index]) break; } if (!spec_it.cycled_list()) break; // Found an ambig. } } if (choice_it.cycled_list()) continue; // No match. segmentation->push_back(length); if (choices_pos + length == choices_length && text_index + 1 == target_text.size()) { // This is a complete match. If the rating is good record a new best. if (applybox_debug > 2) { tprintf("Complete match, rating = %g, best=%g, seglength=%d, best=%d\n", rating + choice_rating, *best_rating, segmentation->size(), best_segmentation->size()); } if (best_segmentation->empty() || rating + choice_rating < *best_rating) { *best_segmentation = *segmentation; *best_rating = rating + choice_rating; } } else if (choices_pos + length < choices_length && text_index + 1 < target_text.size()) { if (applybox_debug > 3) { tprintf("Match found for %d=%s:%s, at %d+%d, recursing...\n", target_text[text_index], unicharset.id_to_unichar(target_text[text_index]), choice_it.data()->unichar_id() == target_text[text_index] ? "Match" : "Ambig", choices_pos, length); } SearchForText(choices, choices_pos + length, choices_length, target_text, text_index + 1, rating + choice_rating, segmentation, best_rating, best_segmentation); if (applybox_debug > 3) { tprintf("End recursion for %d=%s\n", target_text[text_index], unicharset.id_to_unichar(target_text[text_index])); } } segmentation->truncate(segmentation->size() - 1); } } // Counts up the labelled words and the blobs within. // Deletes all unused or emptied words, counting the unused ones. // Resets W_BOL and W_EOL flags correctly. // Builds the rebuild_word and rebuilds the box_word and the best_choice. void Tesseract::TidyUp(PAGE_RES* page_res) { int ok_blob_count = 0; int bad_blob_count = 0; int ok_word_count = 0; int unlabelled_words = 0; PAGE_RES_IT pr_it(page_res); WERD_RES* word_res; for (; (word_res = pr_it.word()) != NULL; pr_it.forward()) { int ok_in_word = 0; int blob_count = word_res->correct_text.size(); WERD_CHOICE* word_choice = new WERD_CHOICE(word_res->uch_set, blob_count); word_choice->set_permuter(TOP_CHOICE_PERM); for (int c = 0; c < blob_count; ++c) { if (word_res->correct_text[c].length() > 0) { ++ok_in_word; } // Since we only need a fake word_res->best_choice, the actual // unichar_ids do not matter. Which is fortunate, since TidyUp() // can be called while training Tesseract, at the stage where // unicharset is not meaningful yet. word_choice->append_unichar_id_space_allocated( INVALID_UNICHAR_ID, word_res->best_state[c], 1.0f, -1.0f); } if (ok_in_word > 0) { ok_blob_count += ok_in_word; bad_blob_count += word_res->correct_text.size() - ok_in_word; word_res->LogNewRawChoice(word_choice); word_res->LogNewCookedChoice(1, false, word_choice); } else { ++unlabelled_words; if (applybox_debug > 0) { tprintf("APPLY_BOXES: Unlabelled word at :"); word_res->word->bounding_box().print(); } pr_it.DeleteCurrentWord(); } } pr_it.restart_page(); for (; (word_res = pr_it.word()) != NULL; pr_it.forward()) { // Denormalize back to a BoxWord. word_res->RebuildBestState(); word_res->SetupBoxWord(); word_res->word->set_flag(W_BOL, pr_it.prev_row() != pr_it.row()); word_res->word->set_flag(W_EOL, pr_it.next_row() != pr_it.row()); } if (applybox_debug > 0) { tprintf(" Found %d good blobs.\n", ok_blob_count); if (bad_blob_count > 0) { tprintf(" Leaving %d unlabelled blobs in %d words.\n", bad_blob_count, ok_word_count); } if (unlabelled_words > 0) tprintf(" %d remaining unlabelled words deleted.\n", unlabelled_words); } } // Logs a bad box by line in the box file and box coords. void Tesseract::ReportFailedBox(int boxfile_lineno, TBOX box, const char *box_ch, const char *err_msg) { tprintf("APPLY_BOXES: boxfile line %d/%s ((%d,%d),(%d,%d)): %s\n", boxfile_lineno + 1, box_ch, box.left(), box.bottom(), box.right(), box.top(), err_msg); } // Creates a fake best_choice entry in each WERD_RES with the correct text. void Tesseract::CorrectClassifyWords(PAGE_RES* page_res) { PAGE_RES_IT pr_it(page_res); for (WERD_RES *word_res = pr_it.word(); word_res != NULL; word_res = pr_it.forward()) { WERD_CHOICE* choice = new WERD_CHOICE(word_res->uch_set, word_res->correct_text.size()); for (int i = 0; i < word_res->correct_text.size(); ++i) { // The part before the first space is the real ground truth, and the // rest is the bounding box location and page number. GenericVector tokens; word_res->correct_text[i].split(' ', &tokens); UNICHAR_ID char_id = unicharset.unichar_to_id(tokens[0].string()); choice->append_unichar_id_space_allocated(char_id, word_res->best_state[i], 0.0f, 0.0f); } word_res->ClearWordChoices(); word_res->LogNewRawChoice(choice); word_res->LogNewCookedChoice(1, false, choice); } } // Calls LearnWord to extract features for labelled blobs within each word. // Features are written to the given filename. void Tesseract::ApplyBoxTraining(const STRING& filename, PAGE_RES* page_res) { PAGE_RES_IT pr_it(page_res); int word_count = 0; for (WERD_RES *word_res = pr_it.word(); word_res != NULL; word_res = pr_it.forward()) { LearnWord(filename.string(), word_res); ++word_count; } tprintf("Generated training data for %d words\n", word_count); } } // namespace tesseract