/////////////////////////////////////////////////////////////////////// // File: lm_state.h // Description: Structures and functionality for capturing the state of // segmentation search guided by the language model. // // Author: Rika Antonova // Created: Mon Jun 20 11:26:43 PST 2012 // // (C) Copyright 2012, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_WORDREC_LANGUAGE_MODEL_DEFS_H_ #define TESSERACT_WORDREC_LANGUAGE_MODEL_DEFS_H_ #include "associate.h" #include "elst.h" #include "dawg.h" #include "lm_consistency.h" #include "matrix.h" #include "ratngs.h" #include "stopper.h" #include "strngs.h" namespace tesseract { /// Used for expressing various language model flags. typedef unsigned char LanguageModelFlagsType; /// The following structs are used for storing the state of the language model /// in the segmentation search graph. In this graph the nodes are BLOB_CHOICEs /// and the links are the relationships between the underlying blobs (see /// segsearch.h for a more detailed description). /// /// Each of the BLOB_CHOICEs contains LanguageModelState struct, which has /// a list of N best paths (list of ViterbiStateEntry) explored by the Viterbi /// search leading up to and including this BLOB_CHOICE. /// /// Each ViterbiStateEntry contains information from various components of the /// language model: dawgs in which the path is found, character ngram model /// probability of the path, script/chartype/font consistency info, state for /// language-specific heuristics (e.g. hyphenated and compound words, lower/upper /// case preferences, etc). /// /// Each ViterbiStateEntry also contains the parent pointer, so that the path /// that it represents (WERD_CHOICE) can be constructed by following these /// parent pointers. /// Struct for storing additional information used by Dawg language model /// component. It stores the set of active dawgs in which the sequence of /// letters on a path can be found. struct LanguageModelDawgInfo { LanguageModelDawgInfo(DawgPositionVector *a, PermuterType pt) : permuter(pt) { active_dawgs = new DawgPositionVector(*a); } ~LanguageModelDawgInfo() { delete active_dawgs; } DawgPositionVector *active_dawgs; PermuterType permuter; }; /// Struct for storing additional information used by Ngram language model /// component. struct LanguageModelNgramInfo { LanguageModelNgramInfo(const char *c, int l, bool p, float nc, float ncc) : context(c), context_unichar_step_len(l), pruned(p), ngram_cost(nc), ngram_and_classifier_cost(ncc) {} STRING context; //< context string /// Length of the context measured by advancing using UNICHAR::utf8_step() /// (should be at most the order of the character ngram model used). int context_unichar_step_len; /// The paths with pruned set are pruned out from the perspective of the /// character ngram model. They are explored further because they represent /// a dictionary match or a top choice. Thus ngram_info is still computed /// for them in order to calculate the combined cost. bool pruned; /// -ln(P_ngram_model(path)) float ngram_cost; /// -[ ln(P_classifier(path)) + scale_factor * ln(P_ngram_model(path)) ] float ngram_and_classifier_cost; }; /// Struct for storing the information about a path in the segmentation graph /// explored by Viterbi search. struct ViterbiStateEntry : public ELIST_LINK { ViterbiStateEntry(ViterbiStateEntry *pe, BLOB_CHOICE *b, float c, float ol, const LMConsistencyInfo &ci, const AssociateStats &as, LanguageModelFlagsType tcf, LanguageModelDawgInfo *d, LanguageModelNgramInfo *n, const char *debug_uch) : cost(c), curr_b(b), parent_vse(pe), competing_vse(NULL), ratings_sum(b->rating()), min_certainty(b->certainty()), adapted(b->IsAdapted()), length(1), outline_length(ol), consistency_info(ci), associate_stats(as), top_choice_flags(tcf), dawg_info(d), ngram_info(n), updated(true) { debug_str = (debug_uch == NULL) ? NULL : new STRING(); if (pe != NULL) { ratings_sum += pe->ratings_sum; if (pe->min_certainty < min_certainty) { min_certainty = pe->min_certainty; } adapted += pe->adapted; length += pe->length; outline_length += pe->outline_length; if (debug_uch != NULL) *debug_str += *(pe->debug_str); } if (debug_str != NULL && debug_uch != NULL) *debug_str += debug_uch; } ~ViterbiStateEntry() { delete dawg_info; delete ngram_info; delete debug_str; } /// Comparator function for sorting ViterbiStateEntry_LISTs in /// non-increasing order of costs. static int Compare(const void *e1, const void *e2) { const ViterbiStateEntry *ve1 = *reinterpret_cast(e1); const ViterbiStateEntry *ve2 = *reinterpret_cast(e2); return (ve1->cost < ve2->cost) ? -1 : 1; } inline bool Consistent() const { if (dawg_info != NULL && consistency_info.NumInconsistentCase() == 0) { return true; } return consistency_info.Consistent(); } /// Returns true if this VSE has an alphanumeric character as its classifier /// result. bool HasAlnumChoice(const UNICHARSET& unicharset) { if (curr_b == NULL) return false; UNICHAR_ID unichar_id = curr_b->unichar_id(); if (unicharset.get_isalpha(unichar_id) || unicharset.get_isdigit(unichar_id)) return true; return false; } void Print(const char *msg) const; /// The cost is an adjusted ratings sum, that is adjusted by all the language /// model components that use Viterbi search. float cost; /// Pointers to BLOB_CHOICE and parent ViterbiStateEntry (not owned by this). BLOB_CHOICE *curr_b; ViterbiStateEntry *parent_vse; /// Pointer to a case-competing ViterbiStateEntry in the same list that /// represents a path ending in the same letter of the opposite case. ViterbiStateEntry *competing_vse; /// Various information about the characters on the path represented /// by this ViterbiStateEntry. float ratings_sum; //< sum of ratings of character on the path float min_certainty; //< minimum certainty on the path int adapted; //< number of BLOB_CHOICES from adapted templates int length; //< number of characters on the path float outline_length; //< length of the outline so far LMConsistencyInfo consistency_info; //< path consistency info AssociateStats associate_stats; //< character widths/gaps/seams /// Flags for marking the entry as a top choice path with /// the smallest rating or lower/upper case letters). LanguageModelFlagsType top_choice_flags; /// Extra information maintained by Dawg language model component /// (owned by ViterbiStateEntry). LanguageModelDawgInfo *dawg_info; /// Extra information maintained by Ngram language model component /// (owned by ViterbiStateEntry). LanguageModelNgramInfo *ngram_info; bool updated; //< set to true if the entry has just been created/updated /// UTF8 string representing the path corresponding to this vse. /// Populated only in when language_model_debug_level > 0. STRING *debug_str; }; ELISTIZEH(ViterbiStateEntry); /// Struct to store information maintained by various language model components. struct LanguageModelState { LanguageModelState() : viterbi_state_entries_prunable_length(0), viterbi_state_entries_prunable_max_cost(MAX_FLOAT32), viterbi_state_entries_length(0) {} ~LanguageModelState() {} /// Clears the viterbi search state back to its initial conditions. void Clear(); void Print(const char *msg); /// Storage for the Viterbi state. ViterbiStateEntry_LIST viterbi_state_entries; /// Number and max cost of prunable paths in viterbi_state_entries. int viterbi_state_entries_prunable_length; float viterbi_state_entries_prunable_max_cost; /// Total number of entries in viterbi_state_entries. int viterbi_state_entries_length; }; /// Bundle together all the things pertaining to the best choice/state. struct BestChoiceBundle { explicit BestChoiceBundle(int matrix_dimension) : updated(false), best_vse(NULL) { beam.reserve(matrix_dimension); for (int i = 0; i < matrix_dimension; ++i) beam.push_back(new LanguageModelState); } ~BestChoiceBundle() {} /// Flag to indicate whether anything was changed. bool updated; /// Places to try to fix the word suggested by ambiguity checking. DANGERR fixpt; /// The beam. One LanguageModelState containing a list of ViterbiStateEntry /// per row in the ratings matrix containing all VSEs whose BLOB_CHOICE is /// somewhere in the corresponding row. PointerVector beam; /// Best ViterbiStateEntry and BLOB_CHOICE. ViterbiStateEntry *best_vse; }; } // namespace tesseract #endif // TESSERACT_WORDREC_LANGUAGE_MODEL_DEFS_H_