/********************************************************************** * File: statistc.cpp (Formerly stats.c) * Description: Simple statistical package for integer values. * Author: Ray Smith * Created: Mon Feb 04 16:56:05 GMT 1991 * * (C) Copyright 1991, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H #include "config_auto.h" #endif #include "statistc.h" #include #include #include #include "helpers.h" #include "scrollview.h" #include "tprintf.h" using tesseract::KDPairInc; /********************************************************************** * STATS::STATS * * Construct a new stats element by allocating and zeroing the memory. **********************************************************************/ STATS::STATS(int32_t min_bucket_value, int32_t max_bucket_value_plus_1) { if (max_bucket_value_plus_1 <= min_bucket_value) { min_bucket_value = 0; max_bucket_value_plus_1 = 1; } rangemin_ = min_bucket_value; // setup rangemax_ = max_bucket_value_plus_1; buckets_ = new int32_t[rangemax_ - rangemin_]; clear(); } STATS::STATS() { rangemax_ = 0; rangemin_ = 0; buckets_ = NULL; } /********************************************************************** * STATS::set_range * * Alter the range on an existing stats element. **********************************************************************/ bool STATS::set_range(int32_t min_bucket_value, int32_t max_bucket_value_plus_1) { if (max_bucket_value_plus_1 <= min_bucket_value) { return false; } if (rangemax_ - rangemin_ != max_bucket_value_plus_1 - min_bucket_value) { delete [] buckets_; buckets_ = new int32_t[max_bucket_value_plus_1 - min_bucket_value]; } rangemin_ = min_bucket_value; // setup rangemax_ = max_bucket_value_plus_1; clear(); // zero it return true; } /********************************************************************** * STATS::clear * * Clear out the STATS class by zeroing all the buckets. **********************************************************************/ void STATS::clear() { // clear out buckets total_count_ = 0; if (buckets_ != NULL) memset(buckets_, 0, (rangemax_ - rangemin_) * sizeof(buckets_[0])); } /********************************************************************** * STATS::~STATS * * Destructor for a stats class. **********************************************************************/ STATS::~STATS() { delete[] buckets_; } /********************************************************************** * STATS::add * * Add a set of samples to (or delete from) a pile. **********************************************************************/ void STATS::add(int32_t value, int32_t count) { if (buckets_ == NULL) { return; } value = ClipToRange(value, rangemin_, rangemax_ - 1); buckets_[value - rangemin_] += count; total_count_ += count; // keep count of total } /********************************************************************** * STATS::mode * * Find the mode of a stats class. **********************************************************************/ int32_t STATS::mode() const { // get mode of samples if (buckets_ == NULL) { return rangemin_; } int32_t max = buckets_[0]; // max cell count int32_t maxindex = 0; // index of max for (int index = rangemax_ - rangemin_ - 1; index > 0; --index) { if (buckets_[index] > max) { max = buckets_[index]; // find biggest maxindex = index; } } return maxindex + rangemin_; // index of biggest } /********************************************************************** * STATS::mean * * Find the mean of a stats class. **********************************************************************/ double STATS::mean() const { //get mean of samples if (buckets_ == NULL || total_count_ <= 0) { return static_cast(rangemin_); } int64_t sum = 0; for (int index = rangemax_ - rangemin_ - 1; index >= 0; --index) { sum += static_cast(index) * buckets_[index]; } return static_cast(sum) / total_count_ + rangemin_; } /********************************************************************** * STATS::sd * * Find the standard deviation of a stats class. **********************************************************************/ double STATS::sd() const { //standard deviation if (buckets_ == NULL || total_count_ <= 0) { return 0.0; } int64_t sum = 0; double sqsum = 0.0; for (int index = rangemax_ - rangemin_ - 1; index >= 0; --index) { sum += static_cast(index) * buckets_[index]; sqsum += static_cast(index) * index * buckets_[index]; } double variance = static_cast(sum) / total_count_; variance = sqsum / total_count_ - variance * variance; if (variance > 0.0) return sqrt(variance); return 0.0; } /********************************************************************** * STATS::ile * * Returns the fractile value such that frac fraction (in [0,1]) of samples * has a value less than the return value. **********************************************************************/ double STATS::ile(double frac) const { if (buckets_ == NULL || total_count_ == 0) { return static_cast(rangemin_); } #if 0 // TODO(rays) The existing code doesn't seem to be doing the right thing // with target a double but this substitute crashes the code that uses it. // Investigate and fix properly. int target = IntCastRounded(frac * total_count_); target = ClipToRange(target, 1, total_count_); #else double target = frac * total_count_; target = ClipToRange(target, 1.0, static_cast(total_count_)); #endif int sum = 0; int index = 0; for (index = 0; index < rangemax_ - rangemin_ && sum < target; sum += buckets_[index++]); if (index > 0) { ASSERT_HOST(buckets_[index - 1] > 0); return rangemin_ + index - static_cast(sum - target) / buckets_[index - 1]; } else { return static_cast(rangemin_); } } /********************************************************************** * STATS::min_bucket * * Find REAL minimum bucket - ile(0.0) isn't necessarily correct **********************************************************************/ int32_t STATS::min_bucket() const { // Find min if (buckets_ == NULL || total_count_ == 0) { return rangemin_; } int32_t min = 0; for (min = 0; (min < rangemax_ - rangemin_) && (buckets_[min] == 0); min++); return rangemin_ + min; } /********************************************************************** * STATS::max_bucket * * Find REAL maximum bucket - ile(1.0) isn't necessarily correct **********************************************************************/ int32_t STATS::max_bucket() const { // Find max if (buckets_ == NULL || total_count_ == 0) { return rangemin_; } int32_t max; for (max = rangemax_ - rangemin_ - 1; max > 0 && buckets_[max] == 0; max--); return rangemin_ + max; } /********************************************************************** * STATS::median * * Finds a more useful estimate of median than ile(0.5). * * Overcomes a problem with ile() - if the samples are, for example, * 6,6,13,14 ile(0.5) return 7.0 - when a more useful value would be midway * between 6 and 13 = 9.5 **********************************************************************/ double STATS::median() const { //get median if (buckets_ == NULL) { return static_cast(rangemin_); } double median = ile(0.5); int median_pile = static_cast(floor(median)); if ((total_count_ > 1) && (pile_count(median_pile) == 0)) { int32_t min_pile; int32_t max_pile; /* Find preceding non zero pile */ for (min_pile = median_pile; pile_count(min_pile) == 0; min_pile--); /* Find following non zero pile */ for (max_pile = median_pile; pile_count(max_pile) == 0; max_pile++); median = (min_pile + max_pile) / 2.0; } return median; } /********************************************************************** * STATS::local_min * * Return TRUE if this point is a local min. **********************************************************************/ bool STATS::local_min(int32_t x) const { if (buckets_ == NULL) { return false; } x = ClipToRange(x, rangemin_, rangemax_ - 1) - rangemin_; if (buckets_[x] == 0) return true; int32_t index; // table index for (index = x - 1; index >= 0 && buckets_[index] == buckets_[x]; --index); if (index >= 0 && buckets_[index] < buckets_[x]) return false; for (index = x + 1; index < rangemax_ - rangemin_ && buckets_[index] == buckets_[x]; ++index); if (index < rangemax_ - rangemin_ && buckets_[index] < buckets_[x]) return false; else return true; } /********************************************************************** * STATS::smooth * * Apply a triangular smoothing filter to the stats. * This makes the modes a bit more useful. * The factor gives the height of the triangle, i.e. the weight of the * centre. **********************************************************************/ void STATS::smooth(int32_t factor) { if (buckets_ == NULL || factor < 2) { return; } STATS result(rangemin_, rangemax_); int entrycount = rangemax_ - rangemin_; for (int entry = 0; entry < entrycount; entry++) { //centre weight int count = buckets_[entry] * factor; for (int offset = 1; offset < factor; offset++) { if (entry - offset >= 0) count += buckets_[entry - offset] * (factor - offset); if (entry + offset < entrycount) count += buckets_[entry + offset] * (factor - offset); } result.add(entry + rangemin_, count); } total_count_ = result.total_count_; memcpy(buckets_, result.buckets_, entrycount * sizeof(buckets_[0])); } /********************************************************************** * STATS::cluster * * Cluster the samples into max_cluster clusters. * Each call runs one iteration. The array of clusters must be * max_clusters+1 in size as cluster 0 is used to indicate which samples * have been used. * The return value is the current number of clusters. **********************************************************************/ int32_t STATS::cluster(float lower, // thresholds float upper, float multiple, // distance threshold int32_t max_clusters, // max no to make STATS *clusters) { // array of clusters BOOL8 new_cluster; // added one float *centres; // cluster centres int32_t entry; // bucket index int32_t cluster; // cluster index int32_t best_cluster; // one to assign to int32_t new_centre = 0; // residual mode int32_t new_mode; // pile count of new_centre int32_t count; // pile to place float dist; // from cluster float min_dist; // from best_cluster int32_t cluster_count; // no of clusters if (buckets_ == NULL || max_clusters < 1) return 0; centres = new float[max_clusters + 1]; for (cluster_count = 1; cluster_count <= max_clusters && clusters[cluster_count].buckets_ != NULL && clusters[cluster_count].total_count_ > 0; cluster_count++) { centres[cluster_count] = static_cast(clusters[cluster_count].ile(0.5)); new_centre = clusters[cluster_count].mode(); for (entry = new_centre - 1; centres[cluster_count] - entry < lower && entry >= rangemin_ && pile_count(entry) <= pile_count(entry + 1); entry--) { count = pile_count(entry) - clusters[0].pile_count(entry); if (count > 0) { clusters[cluster_count].add(entry, count); clusters[0].add (entry, count); } } for (entry = new_centre + 1; entry - centres[cluster_count] < lower && entry < rangemax_ && pile_count(entry) <= pile_count(entry - 1); entry++) { count = pile_count(entry) - clusters[0].pile_count(entry); if (count > 0) { clusters[cluster_count].add(entry, count); clusters[0].add(entry, count); } } } cluster_count--; if (cluster_count == 0) { clusters[0].set_range(rangemin_, rangemax_); } do { new_cluster = FALSE; new_mode = 0; for (entry = 0; entry < rangemax_ - rangemin_; entry++) { count = buckets_[entry] - clusters[0].buckets_[entry]; //remaining pile if (count > 0) { //any to handle min_dist = static_cast(INT32_MAX); best_cluster = 0; for (cluster = 1; cluster <= cluster_count; cluster++) { dist = entry + rangemin_ - centres[cluster]; //find distance if (dist < 0) dist = -dist; if (dist < min_dist) { min_dist = dist; //find least best_cluster = cluster; } } if (min_dist > upper //far enough for new && (best_cluster == 0 || entry + rangemin_ > centres[best_cluster] * multiple || entry + rangemin_ < centres[best_cluster] / multiple)) { if (count > new_mode) { new_mode = count; new_centre = entry + rangemin_; } } } } // need new and room if (new_mode > 0 && cluster_count < max_clusters) { cluster_count++; new_cluster = TRUE; if (!clusters[cluster_count].set_range(rangemin_, rangemax_)) { delete [] centres; return 0; } centres[cluster_count] = static_cast(new_centre); clusters[cluster_count].add(new_centre, new_mode); clusters[0].add(new_centre, new_mode); for (entry = new_centre - 1; centres[cluster_count] - entry < lower && entry >= rangemin_ && pile_count (entry) <= pile_count(entry + 1); entry--) { count = pile_count(entry) - clusters[0].pile_count(entry); if (count > 0) { clusters[cluster_count].add(entry, count); clusters[0].add(entry, count); } } for (entry = new_centre + 1; entry - centres[cluster_count] < lower && entry < rangemax_ && pile_count (entry) <= pile_count(entry - 1); entry++) { count = pile_count(entry) - clusters[0].pile_count(entry); if (count > 0) { clusters[cluster_count].add(entry, count); clusters[0].add (entry, count); } } centres[cluster_count] = static_cast(clusters[cluster_count].ile(0.5)); } } while (new_cluster && cluster_count < max_clusters); delete [] centres; return cluster_count; } // Helper tests that the current index is still part of the peak and gathers // the data into the peak, returning false when the peak is ended. // src_buckets[index] - used_buckets[index] is the unused part of the histogram. // prev_count is the histogram count of the previous index on entry and is // updated to the current index on return. // total_count and total_value are accumulating the mean of the peak. static bool GatherPeak(int index, const int* src_buckets, int* used_buckets, int* prev_count, int* total_count, double* total_value) { int pile_count = src_buckets[index] - used_buckets[index]; if (pile_count <= *prev_count && pile_count > 0) { // Accumulate count and index.count product. *total_count += pile_count; *total_value += index * pile_count; // Mark this index as used used_buckets[index] = src_buckets[index]; *prev_count = pile_count; return true; } else { return false; } } // Finds (at most) the top max_modes modes, well actually the whole peak around // each mode, returning them in the given modes vector as a pair in order of decreasing total count. // Since the mean is the key and the count the data in the pair, a single call // to sort on the output will re-sort by increasing mean of peak if that is // more useful than decreasing total count. // Returns the actual number of modes found. int STATS::top_n_modes(int max_modes, GenericVector >* modes) const { if (max_modes <= 0) return 0; int src_count = rangemax_ - rangemin_; // Used copies the counts in buckets_ as they get used. STATS used(rangemin_, rangemax_); modes->truncate(0); // Total count of the smallest peak found so far. int least_count = 1; // Mode that is used as a seed for each peak int max_count = 0; do { // Find an unused mode. max_count = 0; int max_index = 0; for (int src_index = 0; src_index < src_count; src_index++) { int pile_count = buckets_[src_index] - used.buckets_[src_index]; if (pile_count > max_count) { max_count = pile_count; max_index = src_index; } } if (max_count > 0) { // Copy the bucket count to used so it doesn't get found again. used.buckets_[max_index] = max_count; // Get the entire peak. double total_value = max_index * max_count; int total_count = max_count; int prev_pile = max_count; for (int offset = 1; max_index + offset < src_count; ++offset) { if (!GatherPeak(max_index + offset, buckets_, used.buckets_, &prev_pile, &total_count, &total_value)) break; } prev_pile = buckets_[max_index]; for (int offset = 1; max_index - offset >= 0; ++offset) { if (!GatherPeak(max_index - offset, buckets_, used.buckets_, &prev_pile, &total_count, &total_value)) break; } if (total_count > least_count || modes->size() < max_modes) { // We definitely want this mode, so if we have enough discard the least. if (modes->size() == max_modes) modes->truncate(max_modes - 1); int target_index = 0; // Linear search for the target insertion point. while (target_index < modes->size() && (*modes)[target_index].data >= total_count) ++target_index; float peak_mean = static_cast(total_value / total_count + rangemin_); modes->insert(KDPairInc(peak_mean, total_count), target_index); least_count = modes->back().data; } } } while (max_count > 0); return modes->size(); } /********************************************************************** * STATS::print * * Prints a summary and table of the histogram. **********************************************************************/ void STATS::print() const { if (buckets_ == NULL) { return; } int32_t min = min_bucket() - rangemin_; int32_t max = max_bucket() - rangemin_; int num_printed = 0; for (int index = min; index <= max; index++) { if (buckets_[index] != 0) { tprintf("%4d:%-3d ", rangemin_ + index, buckets_[index]); if (++num_printed % 8 == 0) tprintf ("\n"); } } tprintf ("\n"); print_summary(); } /********************************************************************** * STATS::print_summary * * Print a summary of the stats. **********************************************************************/ void STATS::print_summary() const { if (buckets_ == NULL) { return; } int32_t min = min_bucket(); int32_t max = max_bucket(); tprintf("Total count=%d\n", total_count_); tprintf("Min=%.2f Really=%d\n", ile(0.0), min); tprintf("Lower quartile=%.2f\n", ile(0.25)); tprintf("Median=%.2f, ile(0.5)=%.2f\n", median(), ile(0.5)); tprintf("Upper quartile=%.2f\n", ile(0.75)); tprintf("Max=%.2f Really=%d\n", ile(1.0), max); tprintf("Range=%d\n", max + 1 - min); tprintf("Mean= %.2f\n", mean()); tprintf("SD= %.2f\n", sd()); } /********************************************************************** * STATS::plot * * Draw a histogram of the stats table. **********************************************************************/ #ifndef GRAPHICS_DISABLED void STATS::plot(ScrollView* window, // to draw in float xorigin, // bottom left float yorigin, float xscale, // one x unit float yscale, // one y unit ScrollView::Color colour) const { // colour to draw in if (buckets_ == NULL) { return; } window->Pen(colour); for (int index = 0; index < rangemax_ - rangemin_; index++) { window->Rectangle( xorigin + xscale * index, yorigin, xorigin + xscale * (index + 1), yorigin + yscale * buckets_[index]); } } #endif /********************************************************************** * STATS::plotline * * Draw a histogram of the stats table. (Line only) **********************************************************************/ #ifndef GRAPHICS_DISABLED void STATS::plotline(ScrollView* window, // to draw in float xorigin, // bottom left float yorigin, float xscale, // one x unit float yscale, // one y unit ScrollView::Color colour) const { // colour to draw in if (buckets_ == NULL) { return; } window->Pen(colour); window->SetCursor(xorigin, yorigin + yscale * buckets_[0]); for (int index = 0; index < rangemax_ - rangemin_; index++) { window->DrawTo(xorigin + xscale * index, yorigin + yscale * buckets_[index]); } } #endif /********************************************************************** * choose_nth_item * * Returns the index of what would b the nth item in the array * if the members were sorted, without actually sorting. **********************************************************************/ int32_t choose_nth_item(int32_t index, float *array, int32_t count) { int32_t next_sample; // next one to do int32_t next_lesser; // space for new int32_t prev_greater; // last one saved int32_t equal_count; // no of equal ones float pivot; // proposed median float sample; // current sample if (count <= 1) return 0; if (count == 2) { if (array[0] < array[1]) { return index >= 1 ? 1 : 0; } else { return index >= 1 ? 0 : 1; } } else { if (index < 0) index = 0; // ensure legal else if (index >= count) index = count - 1; equal_count = (int32_t) (rand() % count); pivot = array[equal_count]; // fill gap array[equal_count] = array[0]; next_lesser = 0; prev_greater = count; equal_count = 1; for (next_sample = 1; next_sample < prev_greater;) { sample = array[next_sample]; if (sample < pivot) { // shuffle array[next_lesser++] = sample; next_sample++; } else if (sample > pivot) { prev_greater--; // juggle array[next_sample] = array[prev_greater]; array[prev_greater] = sample; } else { equal_count++; next_sample++; } } for (next_sample = next_lesser; next_sample < prev_greater;) array[next_sample++] = pivot; if (index < next_lesser) return choose_nth_item (index, array, next_lesser); else if (index < prev_greater) return next_lesser; // in equal bracket else return choose_nth_item (index - prev_greater, array + prev_greater, count - prev_greater) + prev_greater; } } /********************************************************************** * choose_nth_item * * Returns the index of what would be the nth item in the array * if the members were sorted, without actually sorting. **********************************************************************/ int32_t choose_nth_item(int32_t index, void *array, int32_t count, size_t size, int (*compar)(const void*, const void*)) { int result; // of compar int32_t next_sample; // next one to do int32_t next_lesser; // space for new int32_t prev_greater; // last one saved int32_t equal_count; // no of equal ones int32_t pivot; // proposed median if (count <= 1) return 0; if (count == 2) { if (compar (array, (char *) array + size) < 0) { return index >= 1 ? 1 : 0; } else { return index >= 1 ? 0 : 1; } } if (index < 0) index = 0; // ensure legal else if (index >= count) index = count - 1; pivot = (int32_t) (rand () % count); swap_entries (array, size, pivot, 0); next_lesser = 0; prev_greater = count; equal_count = 1; for (next_sample = 1; next_sample < prev_greater;) { result = compar ((char *) array + size * next_sample, (char *) array + size * next_lesser); if (result < 0) { swap_entries (array, size, next_lesser++, next_sample++); // shuffle } else if (result > 0) { prev_greater--; swap_entries(array, size, prev_greater, next_sample); } else { equal_count++; next_sample++; } } if (index < next_lesser) return choose_nth_item (index, array, next_lesser, size, compar); else if (index < prev_greater) return next_lesser; // in equal bracket else return choose_nth_item (index - prev_greater, (char *) array + size * prev_greater, count - prev_greater, size, compar) + prev_greater; } /********************************************************************** * swap_entries * * Swap 2 entries of arbitrary size in-place in a table. **********************************************************************/ void swap_entries(void *array, // array of entries size_t size, // size of entry int32_t index1, // entries to swap int32_t index2) { char tmp; char *ptr1; // to entries char *ptr2; size_t count; // of bytes ptr1 = static_cast(array) + index1 * size; ptr2 = static_cast(array) + index2 * size; for (count = 0; count < size; count++) { tmp = *ptr1; *ptr1++ = *ptr2; *ptr2++ = tmp; // tedious! } }