// Copyright 2011 Google Inc. All Rights Reserved. // Author: rays@google.com (Ray Smith) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include #include #include "errorcounter.h" #include "fontinfo.h" #include "sampleiterator.h" #include "shapeclassifier.h" #include "shapetable.h" #include "trainingsample.h" #include "trainingsampleset.h" #include "unicity_table.h" namespace tesseract { // Difference in result rating to be thought of as an "equal" choice. const double kRatingEpsilon = 1.0 / 32; // Tests a classifier, computing its error rate. // See errorcounter.h for description of arguments. // Iterates over the samples, calling the classifier in normal/silent mode. // If the classifier makes a CT_UNICHAR_TOPN_ERR error, and the appropriate // report_level is set (4 or greater), it will then call the classifier again // with a debug flag and a keep_this argument to find out what is going on. double ErrorCounter::ComputeErrorRate(ShapeClassifier* classifier, int report_level, CountTypes boosting_mode, const FontInfoTable& fontinfo_table, const GenericVector& page_images, SampleIterator* it, double* unichar_error, double* scaled_error, STRING* fonts_report) { const int fontsize = it->sample_set()->NumFonts(); ErrorCounter counter(classifier->GetUnicharset(), fontsize); GenericVector results; clock_t start = clock(); int total_samples = 0; double unscaled_error = 0.0; // Set a number of samples on which to run the classify debug mode. int error_samples = report_level > 3 ? report_level * report_level : 0; // Iterate over all the samples, accumulating errors. for (it->Begin(); !it->AtEnd(); it->Next()) { TrainingSample* mutable_sample = it->MutableSample(); int page_index = mutable_sample->page_num(); Pix* page_pix = 0 <= page_index && page_index < page_images.size() ? page_images[page_index] : nullptr; // No debug, no keep this. classifier->UnicharClassifySample(*mutable_sample, page_pix, 0, INVALID_UNICHAR_ID, &results); bool debug_it = false; int correct_id = mutable_sample->class_id(); if (counter.unicharset_.has_special_codes() && (correct_id == UNICHAR_SPACE || correct_id == UNICHAR_JOINED || correct_id == UNICHAR_BROKEN)) { // This is junk so use the special counter. debug_it = counter.AccumulateJunk(report_level > 3, results, mutable_sample); } else { debug_it = counter.AccumulateErrors(report_level > 3, boosting_mode, fontinfo_table, results, mutable_sample); } if (debug_it && error_samples > 0) { // Running debug, keep the correct answer, and debug the classifier. tprintf("Error on sample %d: %s Classifier debug output:\n", it->GlobalSampleIndex(), it->sample_set()->SampleToString(*mutable_sample).string()); classifier->DebugDisplay(*mutable_sample, page_pix, correct_id); --error_samples; } ++total_samples; } const double total_time = 1.0 * (clock() - start) / CLOCKS_PER_SEC; // Create the appropriate error report. unscaled_error = counter.ReportErrors(report_level, boosting_mode, fontinfo_table, *it, unichar_error, fonts_report); if (scaled_error != nullptr) *scaled_error = counter.scaled_error_; if (report_level > 1) { // It is useful to know the time in microseconds/char. tprintf("Errors computed in %.2fs at %.1f μs/char\n", total_time, 1000000.0 * total_time / total_samples); } return unscaled_error; } // Tests a pair of classifiers, debugging errors of the new against the old. // See errorcounter.h for description of arguments. // Iterates over the samples, calling the classifiers in normal/silent mode. // If the new_classifier makes a boosting_mode error that the old_classifier // does not, it will then call the new_classifier again with a debug flag // and a keep_this argument to find out what is going on. void ErrorCounter::DebugNewErrors( ShapeClassifier* new_classifier, ShapeClassifier* old_classifier, CountTypes boosting_mode, const FontInfoTable& fontinfo_table, const GenericVector& page_images, SampleIterator* it) { int fontsize = it->sample_set()->NumFonts(); ErrorCounter old_counter(old_classifier->GetUnicharset(), fontsize); ErrorCounter new_counter(new_classifier->GetUnicharset(), fontsize); GenericVector results; int total_samples = 0; int error_samples = 25; int total_new_errors = 0; // Iterate over all the samples, accumulating errors. for (it->Begin(); !it->AtEnd(); it->Next()) { TrainingSample* mutable_sample = it->MutableSample(); int page_index = mutable_sample->page_num(); Pix* page_pix = 0 <= page_index && page_index < page_images.size() ? page_images[page_index] : nullptr; // No debug, no keep this. old_classifier->UnicharClassifySample(*mutable_sample, page_pix, 0, INVALID_UNICHAR_ID, &results); int correct_id = mutable_sample->class_id(); if (correct_id != 0 && !old_counter.AccumulateErrors(true, boosting_mode, fontinfo_table, results, mutable_sample)) { // old classifier was correct, check the new one. new_classifier->UnicharClassifySample(*mutable_sample, page_pix, 0, INVALID_UNICHAR_ID, &results); if (correct_id != 0 && new_counter.AccumulateErrors(true, boosting_mode, fontinfo_table, results, mutable_sample)) { tprintf("New Error on sample %d: Classifier debug output:\n", it->GlobalSampleIndex()); ++total_new_errors; new_classifier->UnicharClassifySample(*mutable_sample, page_pix, 1, correct_id, &results); if (results.size() > 0 && error_samples > 0) { new_classifier->DebugDisplay(*mutable_sample, page_pix, correct_id); --error_samples; } } } ++total_samples; } tprintf("Total new errors = %d\n", total_new_errors); } // Constructor is private. Only anticipated use of ErrorCounter is via // the static ComputeErrorRate. ErrorCounter::ErrorCounter(const UNICHARSET& unicharset, int fontsize) : scaled_error_(0.0), rating_epsilon_(kRatingEpsilon), unichar_counts_(unicharset.size(), unicharset.size(), 0), ok_score_hist_(0, 101), bad_score_hist_(0, 101), unicharset_(unicharset) { Counts empty_counts; font_counts_.init_to_size(fontsize, empty_counts); multi_unichar_counts_.init_to_size(unicharset.size(), 0); } // Accumulates the errors from the classifier results on a single sample. // Returns true if debug is true and a CT_UNICHAR_TOPN_ERR error occurred. // boosting_mode selects the type of error to be used for boosting and the // is_error_ member of sample is set according to whether the required type // of error occurred. The font_table provides access to font properties // for error counting and shape_table is used to understand the relationship // between unichar_ids and shape_ids in the results bool ErrorCounter::AccumulateErrors(bool debug, CountTypes boosting_mode, const FontInfoTable& font_table, const GenericVector& results, TrainingSample* sample) { int num_results = results.size(); int answer_actual_rank = -1; int font_id = sample->font_id(); int unichar_id = sample->class_id(); sample->set_is_error(false); if (num_results == 0) { // Reject. We count rejects as a separate category, but still mark the // sample as an error in case any training module wants to use that to // improve the classifier. sample->set_is_error(true); ++font_counts_[font_id].n[CT_REJECT]; } else { // Find rank of correct unichar answer, using rating_epsilon_ to allow // different answers to score as equal. (Ignoring the font.) int epsilon_rank = 0; int answer_epsilon_rank = -1; int num_top_answers = 0; double prev_rating = results[0].rating; bool joined = false; bool broken = false; int res_index = 0; while (res_index < num_results) { if (results[res_index].rating < prev_rating - rating_epsilon_) { ++epsilon_rank; prev_rating = results[res_index].rating; } if (results[res_index].unichar_id == unichar_id && answer_epsilon_rank < 0) { answer_epsilon_rank = epsilon_rank; answer_actual_rank = res_index; } if (results[res_index].unichar_id == UNICHAR_JOINED && unicharset_.has_special_codes()) joined = true; else if (results[res_index].unichar_id == UNICHAR_BROKEN && unicharset_.has_special_codes()) broken = true; else if (epsilon_rank == 0) ++num_top_answers; ++res_index; } if (answer_actual_rank != 0) { // Correct result is not absolute top. ++font_counts_[font_id].n[CT_UNICHAR_TOPTOP_ERR]; if (boosting_mode == CT_UNICHAR_TOPTOP_ERR) sample->set_is_error(true); } if (answer_epsilon_rank == 0) { ++font_counts_[font_id].n[CT_UNICHAR_TOP_OK]; // Unichar OK, but count if multiple unichars. if (num_top_answers > 1) { ++font_counts_[font_id].n[CT_OK_MULTI_UNICHAR]; ++multi_unichar_counts_[unichar_id]; } // Check to see if any font in the top choice has attributes that match. // TODO(rays) It is easy to add counters for individual font attributes // here if we want them. if (font_table.SetContainsFontProperties( font_id, results[answer_actual_rank].fonts)) { // Font attributes were matched. // Check for multiple properties. if (font_table.SetContainsMultipleFontProperties( results[answer_actual_rank].fonts)) ++font_counts_[font_id].n[CT_OK_MULTI_FONT]; } else { // Font attributes weren't matched. ++font_counts_[font_id].n[CT_FONT_ATTR_ERR]; } } else { // This is a top unichar error. ++font_counts_[font_id].n[CT_UNICHAR_TOP1_ERR]; if (boosting_mode == CT_UNICHAR_TOP1_ERR) sample->set_is_error(true); // Count maps from unichar id to wrong unichar id. ++unichar_counts_(unichar_id, results[0].unichar_id); if (answer_epsilon_rank < 0 || answer_epsilon_rank >= 2) { // It is also a 2nd choice unichar error. ++font_counts_[font_id].n[CT_UNICHAR_TOP2_ERR]; if (boosting_mode == CT_UNICHAR_TOP2_ERR) sample->set_is_error(true); } if (answer_epsilon_rank < 0) { // It is also a top-n choice unichar error. ++font_counts_[font_id].n[CT_UNICHAR_TOPN_ERR]; if (boosting_mode == CT_UNICHAR_TOPN_ERR) sample->set_is_error(true); answer_epsilon_rank = epsilon_rank; } } // Compute mean number of return values and mean rank of correct answer. font_counts_[font_id].n[CT_NUM_RESULTS] += num_results; font_counts_[font_id].n[CT_RANK] += answer_epsilon_rank; if (joined) ++font_counts_[font_id].n[CT_OK_JOINED]; if (broken) ++font_counts_[font_id].n[CT_OK_BROKEN]; } // If it was an error for boosting then sum the weight. if (sample->is_error()) { scaled_error_ += sample->weight(); if (debug) { tprintf("%d results for char %s font %d :", num_results, unicharset_.id_to_unichar(unichar_id), font_id); for (int i = 0; i < num_results; ++i) { tprintf(" %.3f : %s\n", results[i].rating, unicharset_.id_to_unichar(results[i].unichar_id)); } return true; } int percent = 0; if (num_results > 0) percent = IntCastRounded(results[0].rating * 100); bad_score_hist_.add(percent, 1); } else { int percent = 0; if (answer_actual_rank >= 0) percent = IntCastRounded(results[answer_actual_rank].rating * 100); ok_score_hist_.add(percent, 1); } return false; } // Accumulates counts for junk. Counts only whether the junk was correctly // rejected or not. bool ErrorCounter::AccumulateJunk(bool debug, const GenericVector& results, TrainingSample* sample) { // For junk we accept no answer, or an explicit shape answer matching the // class id of the sample. const int num_results = results.size(); const int font_id = sample->font_id(); const int unichar_id = sample->class_id(); int percent = 0; if (num_results > 0) percent = IntCastRounded(results[0].rating * 100); if (num_results > 0 && results[0].unichar_id != unichar_id) { // This is a junk error. ++font_counts_[font_id].n[CT_ACCEPTED_JUNK]; sample->set_is_error(true); // It counts as an error for boosting too so sum the weight. scaled_error_ += sample->weight(); bad_score_hist_.add(percent, 1); return debug; } else { // Correctly rejected. ++font_counts_[font_id].n[CT_REJECTED_JUNK]; sample->set_is_error(false); ok_score_hist_.add(percent, 1); } return false; } // Creates a report of the error rate. The report_level controls the detail // that is reported to stderr via tprintf: // 0 -> no output. // >=1 -> bottom-line error rate. // >=3 -> font-level error rate. // boosting_mode determines the return value. It selects which (un-weighted) // error rate to return. // The fontinfo_table from MasterTrainer provides the names of fonts. // The it determines the current subset of the training samples. // If not nullptr, the top-choice unichar error rate is saved in unichar_error. // If not nullptr, the report string is saved in fonts_report. // (Ignoring report_level). double ErrorCounter::ReportErrors(int report_level, CountTypes boosting_mode, const FontInfoTable& fontinfo_table, const SampleIterator& it, double* unichar_error, STRING* fonts_report) { // Compute totals over all the fonts and report individual font results // when required. Counts totals; int fontsize = font_counts_.size(); for (int f = 0; f < fontsize; ++f) { // Accumulate counts over fonts. totals += font_counts_[f]; STRING font_report; if (ReportString(false, font_counts_[f], &font_report)) { if (fonts_report != nullptr) { *fonts_report += fontinfo_table.get(f).name; *fonts_report += ": "; *fonts_report += font_report; *fonts_report += "\n"; } if (report_level > 2) { // Report individual font error rates. tprintf("%s: %s\n", fontinfo_table.get(f).name, font_report.string()); } } } // Report the totals. STRING total_report; bool any_results = ReportString(true, totals, &total_report); if (fonts_report != nullptr && fonts_report->length() == 0) { // Make sure we return something even if there were no samples. *fonts_report = "NoSamplesFound: "; *fonts_report += total_report; *fonts_report += "\n"; } if (report_level > 0) { // Report the totals. STRING total_report; if (any_results) { tprintf("TOTAL Scaled Err=%.4g%%, %s\n", scaled_error_ * 100.0, total_report.string()); } // Report the worst substitution error only for now. if (totals.n[CT_UNICHAR_TOP1_ERR] > 0) { int charsetsize = unicharset_.size(); int worst_uni_id = 0; int worst_result_id = 0; int worst_err = 0; for (int u = 0; u < charsetsize; ++u) { for (int v = 0; v < charsetsize; ++v) { if (unichar_counts_(u, v) > worst_err) { worst_err = unichar_counts_(u, v); worst_uni_id = u; worst_result_id = v; } } } if (worst_err > 0) { tprintf("Worst error = %d:%s -> %s with %d/%d=%.2f%% errors\n", worst_uni_id, unicharset_.id_to_unichar(worst_uni_id), unicharset_.id_to_unichar(worst_result_id), worst_err, totals.n[CT_UNICHAR_TOP1_ERR], 100.0 * worst_err / totals.n[CT_UNICHAR_TOP1_ERR]); } } tprintf("Multi-unichar shape use:\n"); for (int u = 0; u < multi_unichar_counts_.size(); ++u) { if (multi_unichar_counts_[u] > 0) { tprintf("%d multiple answers for unichar: %s\n", multi_unichar_counts_[u], unicharset_.id_to_unichar(u)); } } tprintf("OK Score histogram:\n"); ok_score_hist_.print(); tprintf("ERROR Score histogram:\n"); bad_score_hist_.print(); } double rates[CT_SIZE]; if (!ComputeRates(totals, rates)) return 0.0; // Set output values if asked for. if (unichar_error != nullptr) *unichar_error = rates[CT_UNICHAR_TOP1_ERR]; return rates[boosting_mode]; } // Sets the report string to a combined human and machine-readable report // string of the error rates. // Returns false if there is no data, leaving report unchanged, unless // even_if_empty is true. bool ErrorCounter::ReportString(bool even_if_empty, const Counts& counts, STRING* report) { // Compute the error rates. double rates[CT_SIZE]; if (!ComputeRates(counts, rates) && !even_if_empty) return false; // Using %.4g%%, the length of the output string should exactly match the // length of the format string, but in case of overflow, allow for +eddd // on each number. const int kMaxExtraLength = 5; // Length of +eddd. // Keep this format string and the snprintf in sync with the CountTypes enum. const char* format_str = "Unichar=%.4g%%[1], %.4g%%[2], %.4g%%[n], %.4g%%[T] " "Mult=%.4g%%, Jn=%.4g%%, Brk=%.4g%%, Rej=%.4g%%, " "FontAttr=%.4g%%, Multi=%.4g%%, " "Answers=%.3g, Rank=%.3g, " "OKjunk=%.4g%%, Badjunk=%.4g%%"; const size_t max_str_len = strlen(format_str) + kMaxExtraLength * (CT_SIZE - 1) + 1; char* formatted_str = new char[max_str_len]; snprintf(formatted_str, max_str_len, format_str, rates[CT_UNICHAR_TOP1_ERR] * 100.0, rates[CT_UNICHAR_TOP2_ERR] * 100.0, rates[CT_UNICHAR_TOPN_ERR] * 100.0, rates[CT_UNICHAR_TOPTOP_ERR] * 100.0, rates[CT_OK_MULTI_UNICHAR] * 100.0, rates[CT_OK_JOINED] * 100.0, rates[CT_OK_BROKEN] * 100.0, rates[CT_REJECT] * 100.0, rates[CT_FONT_ATTR_ERR] * 100.0, rates[CT_OK_MULTI_FONT] * 100.0, rates[CT_NUM_RESULTS], rates[CT_RANK], 100.0 * rates[CT_REJECTED_JUNK], 100.0 * rates[CT_ACCEPTED_JUNK]); *report = formatted_str; delete [] formatted_str; // Now append each field of counts with a tab in front so the result can // be loaded into a spreadsheet. for (int ct = 0; ct < CT_SIZE; ++ct) report->add_str_int("\t", counts.n[ct]); return true; } // Computes the error rates and returns in rates which is an array of size // CT_SIZE. Returns false if there is no data, leaving rates unchanged. bool ErrorCounter::ComputeRates(const Counts& counts, double rates[CT_SIZE]) { const int ok_samples = counts.n[CT_UNICHAR_TOP_OK] + counts.n[CT_UNICHAR_TOP1_ERR] + counts.n[CT_REJECT]; const int junk_samples = counts.n[CT_REJECTED_JUNK] + counts.n[CT_ACCEPTED_JUNK]; // Compute rates for normal chars. double denominator = static_cast(std::max(ok_samples, 1)); for (int ct = 0; ct <= CT_RANK; ++ct) rates[ct] = counts.n[ct] / denominator; // Compute rates for junk. denominator = static_cast(std::max(junk_samples, 1)); for (int ct = CT_REJECTED_JUNK; ct <= CT_ACCEPTED_JUNK; ++ct) rates[ct] = counts.n[ct] / denominator; return ok_samples != 0 || junk_samples != 0; } ErrorCounter::Counts::Counts() { memset(n, 0, sizeof(n[0]) * CT_SIZE); } // Adds other into this for computing totals. void ErrorCounter::Counts::operator+=(const Counts& other) { for (int ct = 0; ct < CT_SIZE; ++ct) n[ct] += other.n[ct]; } } // namespace tesseract.