// Copyright 2010 Google Inc. All Rights Reserved. // Author: rays@google.com (Ray Smith) // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_TRAINING_TRAININGSAMPLE_H_ #define TESSERACT_TRAINING_TRAININGSAMPLE_H_ #include "elst.h" #include "featdefs.h" #include "intfx.h" #include "intmatcher.h" #include "matrix.h" #include "mf.h" #include "picofeat.h" #include "shapetable.h" #include "unicharset.h" struct Pix; namespace tesseract { class IntFeatureMap; class IntFeatureSpace; class ShapeTable; // Number of elements of cn_feature_. static const int kNumCNParams = 4; // Number of ways to shift the features when randomizing. static const int kSampleYShiftSize = 5; // Number of ways to scale the features when randomizing. static const int kSampleScaleSize = 3; // Total number of different ways to manipulate the features when randomizing. // The first and last combinations are removed to avoid an excessive // top movement (first) and an identity transformation (last). // WARNING: To avoid patterned duplication of samples, be sure to keep // kSampleRandomSize prime! // Eg with current values (kSampleYShiftSize = 5 and TkSampleScaleSize = 3) // kSampleRandomSize is 13, which is prime. static const int kSampleRandomSize = kSampleYShiftSize * kSampleScaleSize - 2; // ASSERT_IS_PRIME(kSampleRandomSize) !! class TrainingSample : public ELIST_LINK { public: TrainingSample() : class_id_(INVALID_UNICHAR_ID), font_id_(0), page_num_(0), num_features_(0), num_micro_features_(0), outline_length_(0), features_(NULL), micro_features_(NULL), weight_(1.0), max_dist_(0.0), sample_index_(0), features_are_indexed_(false), features_are_mapped_(false), is_error_(false) { } ~TrainingSample(); // Saves the given features into a TrainingSample. The features are copied, // so may be deleted afterwards. Delete the return value after use. static TrainingSample* CopyFromFeatures(const INT_FX_RESULT_STRUCT& fx_info, const TBOX& bounding_box, const INT_FEATURE_STRUCT* features, int num_features); // Returns the cn_feature as a FEATURE_STRUCT* needed by cntraining. FEATURE_STRUCT* GetCNFeature() const; // Constructs and returns a copy "randomized" by the method given by // the randomizer index. If index is out of [0, kSampleRandomSize) then // an exact copy is returned. TrainingSample* RandomizedCopy(int index) const; // Constructs and returns an exact copy. TrainingSample* Copy() const; // WARNING! Serialize/DeSerialize do not save/restore the "cache" data // members, which is mostly the mapped features, and the weight. // It is assumed these can all be reconstructed from what is saved. // Writes to the given file. Returns false in case of error. bool Serialize(FILE* fp) const; // Creates from the given file. Returns NULL in case of error. // If swap is true, assumes a big/little-endian swap is needed. static TrainingSample* DeSerializeCreate(bool swap, FILE* fp); // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. bool DeSerialize(bool swap, FILE* fp); // Extracts the needed information from the CHAR_DESC_STRUCT. void ExtractCharDesc(int feature_type, int micro_type, int cn_type, int geo_type, CHAR_DESC_STRUCT* char_desc); // Sets the mapped_features_ from the features_ using the provided // feature_space to the indexed versions of the features. void IndexFeatures(const IntFeatureSpace& feature_space); // Sets the mapped_features_ from the features_ using the provided // feature_map. void MapFeatures(const IntFeatureMap& feature_map); // Returns a pix representing the sample. (Int features only.) Pix* RenderToPix(const UNICHARSET* unicharset) const; // Displays the features in the given window with the given color. void DisplayFeatures(ScrollView::Color color, ScrollView* window) const; // Returns a pix of the original sample image. The pix is padded all round // by padding wherever possible. // The returned Pix must be pixDestroyed after use. // If the input page_pix is NULL, NULL is returned. Pix* GetSamplePix(int padding, Pix* page_pix) const; // Accessors. UNICHAR_ID class_id() const { return class_id_; } void set_class_id(int id) { class_id_ = id; } int font_id() const { return font_id_; } void set_font_id(int id) { font_id_ = id; } int page_num() const { return page_num_; } void set_page_num(int page) { page_num_ = page; } const TBOX& bounding_box() const { return bounding_box_; } void set_bounding_box(const TBOX& box) { bounding_box_ = box; } int num_features() const { return num_features_; } const INT_FEATURE_STRUCT* features() const { return features_; } int num_micro_features() const { return num_micro_features_; } const MicroFeature* micro_features() const { return micro_features_; } int outline_length() const { return outline_length_; } float cn_feature(int index) const { return cn_feature_[index]; } int geo_feature(int index) const { return geo_feature_[index]; } double weight() const { return weight_; } void set_weight(double value) { weight_ = value; } double max_dist() const { return max_dist_; } void set_max_dist(double value) { max_dist_ = value; } int sample_index() const { return sample_index_; } void set_sample_index(int value) { sample_index_ = value; } bool features_are_mapped() const { return features_are_mapped_; } const GenericVector& mapped_features() const { ASSERT_HOST(features_are_mapped_); return mapped_features_; } const GenericVector& indexed_features() const { ASSERT_HOST(features_are_indexed_); return mapped_features_; } bool is_error() const { return is_error_; } void set_is_error(bool value) { is_error_ = value; } private: // Unichar id that this sample represents. There obviously must be a // reference UNICHARSET somewhere. Usually in TrainingSampleSet. UNICHAR_ID class_id_; // Font id in which this sample was printed. Refers to a fontinfo_table_ in // MasterTrainer. int font_id_; // Number of page that the sample came from. int page_num_; // Bounding box of sample in original image. TBOX bounding_box_; // Number of INT_FEATURE_STRUCT in features_ array. int num_features_; // Number of MicroFeature in micro_features_ array. int num_micro_features_; // Total length of outline in the baseline normalized coordinate space. // See comment in WERD_RES class definition for a discussion of coordinate // spaces. int outline_length_; // Array of features. INT_FEATURE_STRUCT* features_; // Array of features. MicroFeature* micro_features_; // The one and only CN feature. Indexed by NORM_PARAM_NAME enum. float cn_feature_[kNumCNParams]; // The one and only geometric feature. (Aims at replacing cn_feature_). // Indexed by GeoParams enum in picofeat.h int geo_feature_[GeoCount]; // Non-serialized cache data. // Weight used for boosting training. double weight_; // Maximum distance to other samples of same class/font used in computing // the canonical sample. double max_dist_; // Global index of this sample. int sample_index_; // Indexed/mapped features, as indicated by the bools below. GenericVector mapped_features_; bool features_are_indexed_; bool features_are_mapped_; // True if the last classification was an error by the current definition. bool is_error_; // Randomizing factors. static const int kYShiftValues[kSampleYShiftSize]; static const double kScaleValues[kSampleScaleSize]; }; ELISTIZEH(TrainingSample) } // namespace tesseract #endif // TESSERACT_TRAINING_TRAININGSAMPLE_H_