/////////////////////////////////////////////////////////////////////// // File: genericvector.h // Description: Functions for producing classifications // for the input to ambigstraining. // Author: Daria Antonova // Created: Mon Jun 23 11:26:43 PDT 2008 // // (C) Copyright 2007, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include "ambigs.h" #include "applybox.h" #include "boxread.h" #include "control.h" #include "permute.h" #include "ratngs.h" #include "reject.h" #include "stopper.h" #include "tesseractclass.h" namespace tesseract { // Sets flags necessary for ambigs training mode. // Opens and returns the pointer to the output file. FILE *Tesseract::init_ambigs_training(const STRING &fname) { permute_only_top = 1; // use only top choice permuter tessedit_tess_adaption_mode.set_value(0); // turn off adaption tessedit_ok_mode.set_value(0); // turn off context checking tessedit_enable_doc_dict.set_value(0); // turn off document dictionary save_best_choices.set_value(1); // save individual char choices stopper_no_acceptable_choices.set_value(1); // explore all segmentations save_raw_choices.set_value(1); // save raw choices // Open ambigs output file. STRING output_fname = fname; const char *lastdot = strrchr(output_fname.string(), '.'); if (lastdot != NULL) { output_fname[lastdot - output_fname.string()] = '\0'; } output_fname += ".txt"; FILE *output_file; if (!(output_file = fopen(output_fname.string(), "a+"))) { CANTOPENFILE.error("ambigs_training", EXIT, "Can't open box file %s\n", output_fname.string()); } return output_file; } // This function takes tif/box pair of files and runs recognition on the image, // while making sure that the word bounds that tesseract identified roughly // match to those specified by the input box file. For each word (ngram in a // single bounding box from the input box file) it outputs the ocred result, // the correct label, rating and certainty. void Tesseract::ambigs_training_segmented(const STRING &fname, PAGE_RES *page_res, volatile ETEXT_DESC *monitor, FILE *output_file) { STRING box_fname = fname; const char *lastdot = strrchr(box_fname.string(), '.'); if (lastdot != NULL) { box_fname[lastdot - box_fname.string()] = '\0'; } box_fname += ".box"; FILE *box_file; if (!(box_file = fopen(box_fname.string(), "r"))) { CANTOPENFILE.error("ambigs_training", EXIT, "Can't open box file %s\n", box_fname.string()); } static PAGE_RES_IT page_res_it; page_res_it.page_res = page_res; page_res_it.restart_page(); int x_min, y_min, x_max, y_max; char label[UNICHAR_LEN * 10]; // Process all the words on this page. while (page_res_it.word() != NULL && read_next_box(applybox_page, box_file, label, &x_min, &y_min, &x_max, &y_max)) { // Init bounding box of the current word bounding box and from box file. TBOX box = TBOX(ICOORD(x_min, y_min), ICOORD(x_max, y_max)); TBOX word_box(page_res_it.word()->word->bounding_box()); bool one_word = true; // Check whether the bounding box of the next word overlaps with the // current box from box file. while (page_res_it.next_word() != NULL && box.x_overlap(page_res_it.next_word()->word->bounding_box())) { word_box = word_box.bounding_union( page_res_it.next_word()->word->bounding_box()); page_res_it.forward(); one_word = false; } if (!word_box.major_overlap(box)) { if (!word_box.x_overlap(box)) { // We must be looking at the word that belongs in the "next" bounding // box from the box file. The ngram that was supposed to appear in // the current box read from the box file must have been dropped by // tesseract as noise. tprintf("Word %s was dropped as noise.\n", label); continue; // stay on this blob, but read next box from box file } else { tprintf("Error: Insufficient overlap for word box" " and box from file for %s\n", label); word_box.print(); box.print(); exit(1); } } // Skip recognizing the ngram if tesseract is sure it's not // one word, otherwise run one recognition pass on this word. if (!one_word) { tprintf("Tesseract segmented %s as multiple words\n", label); } else { ambigs_classify_and_output(&page_res_it, label, output_file); } page_res_it.forward(); } fclose(box_file); } // Run classify_word_pass1() on the current word. Output tesseract's raw choice // as a result of the classification. For words labeled with a single unichar // also output all alternatives from blob_choices of the best choice. void Tesseract::ambigs_classify_and_output(PAGE_RES_IT *page_res_it, const char *label, FILE *output_file) { int offset; // Classify word. classify_word_pass1(page_res_it->word(), page_res_it->row()->row, page_res_it->block()->block, FALSE, NULL, NULL); WERD_CHOICE *best_choice = page_res_it->word()->best_choice; ASSERT_HOST(best_choice != NULL); ASSERT_HOST(best_choice->blob_choices() != NULL); // Compute the number of unichars in the label. int label_num_unichars = 0; int step = 1; // should be non-zero on the first iteration for (offset = 0; label[offset] != '\0' && step > 0; step = getDict().getUnicharset().step(label + offset), offset += step, ++label_num_unichars); if (step == 0) { tprintf("Not outputting illegal unichar %s\n", label); return; } // Output all classifier choices for the unigrams (1-1 classifications). if (label_num_unichars == 1 && best_choice->blob_choices()->length() == 1) { BLOB_CHOICE_LIST_C_IT outer_blob_choice_it; outer_blob_choice_it.set_to_list(best_choice->blob_choices()); BLOB_CHOICE_IT blob_choice_it; blob_choice_it.set_to_list(outer_blob_choice_it.data()); for (blob_choice_it.mark_cycle_pt(); !blob_choice_it.cycled_list(); blob_choice_it.forward()) { BLOB_CHOICE *blob_choice = blob_choice_it.data(); if (blob_choice->unichar_id() != INVALID_UNICHAR_ID) { fprintf(output_file, "%s\t%s\t%.4f\t%.4f\n", unicharset.id_to_unichar(blob_choice->unichar_id()), label, blob_choice->rating(), blob_choice->certainty()); } } } // Output the raw choice for succesful non 1-1 classifications. getDict().PrintAmbigAlternatives(output_file, label, label_num_unichars); } } // namespace tesseract