/********************************************************************** * File: makerow.cpp (Formerly makerows.c) * Description: Code to arrange blobs into rows of text. * Author: Ray Smith * Created: Mon Sep 21 14:34:48 BST 1992 * * (C) Copyright 1992, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #include "mfcpch.h" #ifdef __UNIX__ #include #endif #include "stderr.h" #include "blobbox.h" #include "lmedsq.h" #include "statistc.h" #include "drawtord.h" #include "blkocc.h" #include "sortflts.h" #include "oldbasel.h" #include "tordmain.h" #include "underlin.h" #include "makerow.h" #include "tprintf.h" #define EXTERN EXTERN BOOL_VAR (textord_heavy_nr, FALSE, "Vigorously remove noise"); EXTERN BOOL_VAR (textord_show_initial_rows, FALSE, "Display row accumulation"); EXTERN BOOL_VAR (textord_show_parallel_rows, FALSE, "Display page correlated rows"); EXTERN BOOL_VAR (textord_show_expanded_rows, FALSE, "Display rows after expanding"); EXTERN BOOL_VAR (textord_show_final_rows, FALSE, "Display rows after final fittin"); EXTERN BOOL_VAR (textord_show_final_blobs, FALSE, "Display blob bounds after pre-ass"); EXTERN BOOL_VAR (textord_test_landscape, FALSE, "Tests refer to land/port"); EXTERN BOOL_VAR (textord_parallel_baselines, TRUE, "Force parallel baselines"); EXTERN BOOL_VAR (textord_straight_baselines, FALSE, "Force straight baselines"); EXTERN BOOL_VAR (textord_quadratic_baselines, FALSE, "Use quadratic splines"); EXTERN BOOL_VAR (textord_old_baselines, TRUE, "Use old baseline algorithm"); EXTERN BOOL_VAR (textord_old_xheight, TRUE, "Use old xheight algorithm"); EXTERN BOOL_VAR (textord_fix_xheight_bug, TRUE, "Use spline baseline"); EXTERN BOOL_VAR (textord_fix_makerow_bug, TRUE, "Prevent multiple baselines"); EXTERN BOOL_VAR (textord_row_xheights, FALSE, "Use row height policy"); EXTERN BOOL_VAR (textord_block_xheights, TRUE, "Use block height policy"); EXTERN BOOL_VAR (textord_xheight_tweak, FALSE, "New min condition on height"); EXTERN BOOL_VAR (textord_cblob_blockocc, TRUE, "Use new projection for underlines"); EXTERN BOOL_VAR (textord_debug_xheights, FALSE, "Test xheight algorithms"); EXTERN BOOL_VAR (textord_biased_skewcalc, TRUE, "Bias skew estimates with line length"); EXTERN BOOL_VAR (textord_interpolating_skew, TRUE, "Interpolate across gaps"); EXTERN INT_VAR (textord_skewsmooth_offset, 2, "For smooth factor"); EXTERN INT_VAR (textord_skewsmooth_offset2, 1, "For smooth factor"); EXTERN INT_VAR (textord_test_x, 0, "coord of test pt"); EXTERN INT_VAR (textord_test_y, 0, "coord of test pt"); EXTERN INT_VAR (textord_min_blobs_in_row, 4, "Min blobs before gradient counted"); EXTERN INT_VAR (textord_spline_minblobs, 8, "Min blobs in each spline segment"); EXTERN INT_VAR (textord_spline_medianwin, 6, "Size of window for spline segmentation"); EXTERN INT_VAR (textord_min_xheight, 10, "Min credible pixel xheight"); EXTERN double_VAR (textord_spline_shift_fraction, 0.02, "Fraction of line spacing for quad"); EXTERN double_VAR (textord_spline_outlier_fraction, 0.1, "Fraction of line spacing for outlier"); EXTERN double_VAR (textord_skew_ile, 0.5, "Ile of gradients for page skew"); EXTERN double_VAR (textord_skew_lag, 0.01, "Lag for skew on row accumulation"); EXTERN double_VAR (textord_linespace_iqrlimit, 0.2, "Max iqr/median for linespace"); EXTERN double_VAR (textord_width_limit, 8, "Max width of blobs to make rows"); EXTERN double_VAR (textord_chop_width, 1.5, "Max width before chopping"); EXTERN double_VAR (textord_expansion_factor, 1.0, "Factor to expand rows by in expand_rows"); EXTERN double_VAR (textord_overlap_x, 0.5, "Fraction of linespace for good overlap"); EXTERN double_VAR (textord_merge_desc, 0.25, "Fraction of linespace for desc drop"); EXTERN double_VAR (textord_merge_x, 0.5, "Fraction of linespace for x height"); EXTERN double_VAR (textord_merge_asc, 0.25, "Fraction of linespace for asc height"); EXTERN double_VAR (textord_minxh, 0.25, "fraction of linesize for min xheight"); EXTERN double_VAR (textord_min_linesize, 1.25, "* blob height for initial linesize"); EXTERN double_VAR (textord_excess_blobsize, 1.3, "New row made if blob makes row this big"); EXTERN double_VAR (textord_occupancy_threshold, 0.4, "Fraction of neighbourhood"); EXTERN double_VAR (textord_underline_width, 2.0, "Multiple of line_size for underline"); EXTERN double_VAR (textord_xheight_mode_fraction, 0.4, "Min pile height to make xheight"); EXTERN double_VAR (textord_ascheight_mode_fraction, 0.15, "Min pile height to make ascheight"); EXTERN double_VAR (textord_ascx_ratio_min, 1.2, "Min cap/xheight"); EXTERN double_VAR (textord_ascx_ratio_max, 1.7, "Max cap/xheight"); EXTERN double_VAR (textord_descx_ratio_min, 0.15, "Min desc/xheight"); EXTERN double_VAR (textord_descx_ratio_max, 0.6, "Max desc/xheight"); EXTERN double_VAR (textord_xheight_error_margin, 0.1, "Accepted variation"); #define MAX_HEIGHT_MODES 12 /********************************************************************** * make_rows * * Arrange the blobs into rows. **********************************************************************/ float make_rows( //make rows ICOORD page_tr, //top right BLOCK_LIST *blocks, //block list TO_BLOCK_LIST *land_blocks, //rotated for landscape TO_BLOCK_LIST *port_blocks //output list ) { float port_m; //global skew float port_err; //global noise // float land_m; //global skew // float land_err; //global noise TO_BLOCK_IT block_it; //iterator //don't do landscape for now // block_it.set_to_list(land_blocks); // for (block_it.mark_cycle_pt();!block_it.cycled_list();block_it.forward()) // make_initial_textrows(page_tr,block_it.data(),FCOORD(0,-1), // (BOOL8)textord_test_landscape); block_it.set_to_list (port_blocks); for (block_it.mark_cycle_pt (); !block_it.cycled_list (); block_it.forward ()) make_initial_textrows (page_tr, block_it.data (), FCOORD (1.0f, 0.0f), !(BOOL8) textord_test_landscape); //compute globally compute_page_skew(port_blocks, port_m, port_err); // compute_page_skew(land_blocks,land_m,land_err); //compute globally // tprintf("Portrait skew gradient=%g, error=%g.\n", // port_m,port_err); // tprintf("Landscape skew gradient=%g, error=%g.\n", // land_m,land_err); block_it.set_to_list (port_blocks); for (block_it.mark_cycle_pt (); !block_it.cycled_list (); block_it.forward ()) { cleanup_rows (page_tr, block_it.data (), port_m, FCOORD (1.0f, 0.0f), block_it.data ()->block->bounding_box ().left (), !(BOOL8) textord_test_landscape); } block_it.set_to_list (land_blocks); // for (block_it.mark_cycle_pt();!block_it.cycled_list();block_it.forward()) // { // cleanup_rows(page_tr,block_it.data(),land_m,FCOORD(0,-1), // -block_it.data()->block->bounding_box().top(), // (BOOL8)textord_test_landscape); // } return port_m; //global skew } /********************************************************************** * make_initial_textrows * * Arrange the good blobs into rows of text. **********************************************************************/ void make_initial_textrows( //find lines ICOORD page_tr, TO_BLOCK *block, //block to do FCOORD rotation, //for drawing BOOL8 testing_on //correct orientation ) { TO_ROW_IT row_it = block->get_rows (); #ifndef GRAPHICS_DISABLED COLOUR colour; //of row if (textord_show_initial_rows && testing_on) { if (to_win == NO_WINDOW) create_to_win(page_tr); } #endif //guess skew assign_blobs_to_rows (block, NULL, 0, TRUE, TRUE, textord_show_initial_rows && testing_on); row_it.move_to_first (); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) fit_lms_line (row_it.data ()); #ifndef GRAPHICS_DISABLED if (textord_show_initial_rows && testing_on) { colour = RED; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { plot_to_row (row_it.data (), colour, rotation); colour = (COLOUR) (colour + 1); if (colour > MAGENTA) colour = RED; } } #endif } /********************************************************************** * fit_lms_line * * Fit an LMS line to a row. **********************************************************************/ void fit_lms_line( //sort function TO_ROW *row //row to fit ) { float m, c; //fitted line BOX box; //blob box LMS lms (row->blob_list ()->length ()); //blobs BLOBNBOX_IT blob_it = row->blob_list (); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { box = blob_it.data ()->bounding_box (); lms.add (FCOORD ((box.left () + box.right ()) / 2.0, box.bottom ())); } lms.fit (m, c); row->set_line (m, c, lms.error ()); } /********************************************************************** * compute_page_skew * * Compute the skew over a full page by averaging the gradients over * all the lines. Get the error of the same row. **********************************************************************/ void compute_page_skew( //get average gradient TO_BLOCK_LIST *blocks, //list of blocks float &page_m, //average gradient float &page_err //average error ) { INT32 row_count; //total rows INT32 blob_count; //total_blobs INT32 row_err; //integer error float *gradients; //of rows float *errors; //of rows INT32 row_index; //of total TO_ROW *row; //current row TO_BLOCK_IT block_it = blocks; //iterator TO_ROW_IT row_it; row_count = 0; blob_count = 0; for (block_it.mark_cycle_pt (); !block_it.cycled_list (); block_it.forward ()) { row_count += block_it.data ()->get_rows ()->length (); //count up rows row_it.set_to_list (block_it.data ()->get_rows ()); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) blob_count += row_it.data ()->blob_list ()->length (); } if (row_count == 0) { page_m = 0.0f; page_err = 0.0f; return; } gradients = (float *) alloc_mem (blob_count * sizeof (float)); //get mem errors = (float *) alloc_mem (blob_count * sizeof (float)); if (gradients == NULL || errors == NULL) MEMORY_OUT.error ("compute_page_skew", ABORT, NULL); row_index = 0; for (block_it.mark_cycle_pt (); !block_it.cycled_list (); block_it.forward ()) { row_it.set_to_list (block_it.data ()->get_rows ()); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row = row_it.data (); blob_count = row->blob_list ()->length (); row_err = (INT32) ceil (row->line_error ()); if (row_err <= 0) row_err = 1; if (textord_biased_skewcalc) { blob_count /= row_err; for (blob_count /= row_err; blob_count > 0; blob_count--) { gradients[row_index] = row->line_m (); errors[row_index] = row->line_error (); row_index++; } } else if (blob_count >= textord_min_blobs_in_row) { //get gradient gradients[row_index] = row->line_m (); errors[row_index] = row->line_error (); row_index++; } } } if (row_index == 0) { //desperate for (block_it.mark_cycle_pt (); !block_it.cycled_list (); block_it.forward ()) { row_it.set_to_list (block_it.data ()->get_rows ()); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row = row_it.data (); gradients[row_index] = row->line_m (); errors[row_index] = row->line_error (); row_index++; } } } row_count = row_index; row_index = choose_nth_item ((INT32) (row_count * textord_skew_ile), gradients, row_count); page_m = gradients[row_index]; row_index = choose_nth_item ((INT32) (row_count * textord_skew_ile), errors, row_count); page_err = errors[row_index]; free_mem(gradients); free_mem(errors); } const double kNoiseSize = 0.5; // Fraction of xheight. const int kMinSize = 8; // Min pixels to be xheight. // Return true if the dot looks like it is part of the i. // Doesn't work for any other diacritical. static bool dot_of_i(BLOBNBOX* dot, BLOBNBOX* i, TO_ROW* row) { const BOX& ibox = i->bounding_box(); const BOX& dotbox = dot->bounding_box(); // Must overlap horizontally by enough and be high enough. int overlap = MIN(dotbox.right(), ibox.right()) - MAX(dotbox.left(), ibox.left()); if (ibox.height() <= 2 * dotbox.height() || (overlap * 2 < ibox.width() && overlap < dotbox.width())) return false; // If the i is tall and thin then it is good. if (ibox.height() > ibox.width() * 2) return true; // The i or ! must be tall and thin. // It might still be tall and thin, but it might be joined to something. // So search the outline for a piece of large height close to the edges // of the dot. const double kHeightFraction = 0.6; double target_height = MIN(dotbox.bottom(), ibox.top()); target_height -= row->line_m()*dotbox.left() + row->line_c(); target_height *= kHeightFraction; int left_min = dotbox.left() - dotbox.width(); int middle = (dotbox.left() + dotbox.right())/2; int right_max = dotbox.right() + dotbox.width(); int left_miny = 0; int left_maxy = 0; int right_miny = 0; int right_maxy = 0; bool found_left = false; bool found_right = false; bool in_left = false; bool in_right = false; C_BLOB* blob = i->cblob(); C_OUTLINE_IT o_it = blob->out_list(); for (o_it.mark_cycle_pt(); !o_it.cycled_list(); o_it.forward()) { C_OUTLINE* outline = o_it.data(); int length = outline->pathlength(); ICOORD pos = outline->start_pos(); for (int step = 0; step < length; pos += outline->step(step++)) { int x = pos.x(); int y = pos.y(); if (x >= left_min && x < middle && !found_left) { // We are in the left part so find min and max y. if (in_left) { if (y > left_maxy) left_maxy = y; if (y < left_miny) left_miny = y; } else { left_maxy = left_miny = y; in_left = true; } } else if (in_left) { // We just left the left so look for size. if (left_maxy - left_miny > target_height) { if (found_right) return true; found_left = true; } in_left = false; } if (x <= right_max && x > middle && !found_right) { // We are in the right part so find min and max y. if (in_right) { if (y > right_maxy) right_maxy = y; if (y < right_miny) right_miny = y; } else { right_maxy = right_miny = y; in_right = true; } } else if (in_right) { // We just left the right so look for size. if (right_maxy - right_miny > target_height) { if (found_left) return true; found_right = true; } in_right = false; } } } return false; } static void vigorous_noise_removal(TO_BLOCK* block) { TO_ROW_IT row_it = block->get_rows (); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { TO_ROW* row = row_it.data(); BLOBNBOX_IT b_it = row->blob_list(); // Estimate the xheight on the row. int max_height = 0; for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOBNBOX* blob = b_it.data(); if (blob->bounding_box().height() > max_height) max_height = blob->bounding_box().height(); } STATS hstats(0, max_height + 1); for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOBNBOX* blob = b_it.data(); int height = blob->bounding_box().height(); if (height >= kMinSize) hstats.add(blob->bounding_box().height(), 1); } float xheight = hstats.median(); // Delete small objects. BLOBNBOX* prev = NULL; for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOBNBOX* blob = b_it.data(); const BOX& box = blob->bounding_box(); if (box.height() < kNoiseSize * xheight) { // Small so delete unless it looks like an i dot. if (prev != NULL) { if (dot_of_i(blob, prev, row)) continue; // Looks OK. } if (!b_it.at_last()) { BLOBNBOX* next = b_it.data_relative(1); if (dot_of_i(blob, next, row)) continue; // Looks OK. } // It might be noise so get rid of it. if (blob->blob() != NULL) delete blob->blob(); if (blob->cblob() != NULL) delete blob->cblob(); delete b_it.extract(); } else { prev = blob; } } } } /********************************************************************** * cleanup_rows * * Remove overlapping rows and fit all the blobs to what's left. **********************************************************************/ void cleanup_rows( //find lines ICOORD page_tr, //top right TO_BLOCK *block, //block to do float gradient, //gradient to fit FCOORD rotation, //for drawing INT32 block_edge, //edge of block BOOL8 testing_on //correct orientation ) { //iterators BLOBNBOX_IT blob_it = &block->blobs; TO_ROW_IT row_it = block->get_rows (); #ifndef GRAPHICS_DISABLED if (textord_show_parallel_rows && testing_on) { if (to_win == NO_WINDOW) create_to_win(page_tr); } #endif //get row coords fit_parallel_rows(block, gradient, rotation, block_edge, textord_show_parallel_rows &&testing_on); delete_non_dropout_rows(block, gradient, rotation, block_edge, textord_show_parallel_rows &&testing_on); expand_rows(page_tr, block, gradient, rotation, block_edge, testing_on); blob_it.set_to_list (&block->blobs); row_it.set_to_list (block->get_rows ()); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) blob_it.add_list_after (row_it.data ()->blob_list ()); //give blobs back assign_blobs_to_rows (block, &gradient, 1, FALSE, FALSE, FALSE); //now new rows must be genuine blob_it.set_to_list (&block->blobs); blob_it.add_list_after (&block->large_blobs); assign_blobs_to_rows (block, &gradient, 2, TRUE, TRUE, FALSE); //safe to use big ones now blob_it.set_to_list (&block->blobs); //throw all blobs in blob_it.add_list_after (&block->noise_blobs); blob_it.add_list_after (&block->small_blobs); assign_blobs_to_rows (block, &gradient, 3, FALSE, FALSE, FALSE); //no rows for noise row_it.set_to_list (block->get_rows ()); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) row_it.data ()->blob_list ()->sort (blob_x_order); fit_parallel_rows(block, gradient, rotation, block_edge, FALSE); if (textord_heavy_nr) { vigorous_noise_removal(block); } separate_underlines(block, gradient, rotation, testing_on); pre_associate_blobs(page_tr, block, rotation, testing_on); #ifndef GRAPHICS_DISABLED if (textord_show_final_rows && testing_on) { if (to_win == NO_WINDOW) create_to_win(page_tr); } #endif fit_parallel_rows(block, gradient, rotation, block_edge, FALSE); // textord_show_final_rows && testing_on); make_spline_rows(block, gradient, rotation, block_edge, textord_show_final_rows &&testing_on); if (!textord_old_xheight || !textord_old_baselines) compute_block_xheight(block, gradient); if (textord_restore_underlines) //fix underlines restore_underlined_blobs(block); #ifndef GRAPHICS_DISABLED if (textord_show_final_rows && testing_on) { plot_blob_list (to_win, &block->blobs, MAGENTA, WHITE); //show discarded blobs plot_blob_list (to_win, &block->underlines, YELLOW, CORAL); } if (textord_show_final_rows && testing_on && block->blobs.length () > 0) tprintf ("%d blobs discarded as noise\n", block->blobs.length ()); if (textord_show_final_rows && testing_on) { draw_meanlines(block, gradient, block_edge, WHITE, rotation); } #endif } /********************************************************************** * delete_non_dropout_rows * * Compute the linespacing and offset. **********************************************************************/ void delete_non_dropout_rows( //find lines TO_BLOCK *block, //block to do float gradient, //global skew FCOORD rotation, //deskew vector INT32 block_edge, //left edge BOOL8 testing_on //correct orientation ) { BOX block_box; //deskewed block INT32 *deltas; //change in occupation INT32 *occupation; //of pixel coords INT32 max_y; //in block INT32 min_y; INT32 line_index; //of scan line INT32 line_count; //no of scan lines INT32 distance; //to drop-out INT32 xleft; //of block INT32 ybottom; //of block TO_ROW *row; //current row TO_ROW_IT row_it = block->get_rows (); BLOBNBOX_IT blob_it = &block->blobs; if (row_it.length () == 0) return; //empty block block_box = deskew_block_coords (block, gradient); xleft = block->block->bounding_box ().left (); ybottom = block->block->bounding_box ().bottom (); min_y = block_box.bottom () - 1; max_y = block_box.top () + 1; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { line_index = (INT32) floor (row_it.data ()->intercept ()); if (line_index <= min_y) min_y = line_index - 1; if (line_index >= max_y) max_y = line_index + 1; } line_count = max_y - min_y + 1; if (line_count <= 0) return; //empty block deltas = (INT32 *) alloc_mem (line_count * sizeof (INT32)); occupation = (INT32 *) alloc_mem (line_count * sizeof (INT32)); if (deltas == NULL || occupation == NULL) MEMORY_OUT.error ("compute_line_spacing", ABORT, NULL); compute_line_occupation(block, gradient, min_y, max_y, occupation, deltas); compute_occupation_threshold ((INT32) ceil (block->line_spacing * (textord_merge_desc + textord_merge_asc)), (INT32) ceil (block->line_spacing * (textord_merge_x + textord_merge_asc)), max_y - min_y + 1, occupation, deltas); #ifndef GRAPHICS_DISABLED if (testing_on) { draw_occupation(xleft, ybottom, min_y, max_y, occupation, deltas); } #endif compute_dropout_distances(occupation, deltas, line_count); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row = row_it.data (); line_index = (INT32) floor (row->intercept ()); distance = deltas[line_index - min_y]; if (find_best_dropout_row (row, distance, block->line_spacing / 2, line_index, &row_it, testing_on)) { #ifndef GRAPHICS_DISABLED if (testing_on) plot_parallel_row(row, gradient, block_edge, WHITE, rotation); #endif blob_it.add_list_after (row_it.data ()->blob_list ()); delete row_it.extract (); //too far away } } for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { blob_it.add_list_after (row_it.data ()->blob_list ()); } free_mem(deltas); free_mem(occupation); } /********************************************************************** * find_best_dropout_row * * Delete this row if it has a neighbour with better dropout characteristics. * TRUE is returned if the row should be deleted. **********************************************************************/ BOOL8 find_best_dropout_row( //find neighbours TO_ROW *row, //row to test INT32 distance, //dropout dist float dist_limit, //threshold distance INT32 line_index, //index of row TO_ROW_IT *row_it, //current position BOOL8 testing_on //correct orientation ) { INT32 next_index; //of neigbouring row INT32 row_offset; //from current row INT32 abs_dist; //absolute distance INT8 row_inc; //increment to row_index TO_ROW *next_row; //nextious row if (testing_on) tprintf ("Row at %g(%g), dropout dist=%d,", row->intercept (), row->parallel_c (), distance); if (distance < 0) { row_inc = 1; abs_dist = -distance; } else { row_inc = -1; abs_dist = distance; } if (abs_dist > dist_limit) { if (testing_on) { tprintf (" too far - deleting\n"); } return TRUE; } if (distance < 0 && !row_it->at_last () || distance >= 0 && !row_it->at_first ()) { row_offset = row_inc; do { next_row = row_it->data_relative (row_offset); next_index = (INT32) floor (next_row->intercept ()); if (distance < 0 && next_index < line_index && next_index > line_index + distance + distance || distance >= 0 && next_index > line_index && next_index < line_index + distance + distance) { if (testing_on) { tprintf (" nearer neighbour (%d) at %g\n", line_index + distance - next_index, next_row->intercept ()); } return TRUE; //other is nearer } else if (next_index == line_index || next_index == line_index + distance + distance) { if (row->believability () <= next_row->believability ()) { if (testing_on) { tprintf (" equal but more believable at %g (%g/%g)\n", next_row->intercept (), row->believability (), next_row->believability ()); } return TRUE; //other is more believable } } row_offset += row_inc; } while ((next_index == line_index || next_index == line_index + distance + distance) && row_offset < row_it->length ()); if (testing_on) tprintf (" keeping\n"); } return FALSE; } /********************************************************************** * deskew_block_coords * * Compute the bounding box of all the blobs in the block * if they were deskewed without actually doing it. **********************************************************************/ BOX deskew_block_coords( //block box TO_BLOCK *block, //block to do float gradient //global skew ) { BOX result; //block bounds BOX blob_box; //of block FCOORD rotation; //deskew vector float length; //of gradient vector TO_ROW_IT row_it = block->get_rows (); TO_ROW *row; //current row BLOBNBOX *blob; //current blob BLOBNBOX_IT blob_it; //iterator length = sqrt (gradient * gradient + 1); rotation = FCOORD (1 / length, -gradient / length); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row = row_it.data (); blob_it.set_to_list (row->blob_list ()); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { blob = blob_it.data (); blob_box = blob->bounding_box (); blob_box.rotate (rotation);//de-skew it result += blob_box; } } return result; } /********************************************************************** * compute_line_occupation * * Compute the pixel projection back on the y axis given the global * skew. Also compute the 1st derivative. **********************************************************************/ void compute_line_occupation( //project blobs TO_BLOCK *block, //block to do float gradient, //global skew INT32 min_y, //min coord in block INT32 max_y, //in block INT32 *occupation, //output projection INT32 *deltas //derivative ) { INT32 line_count; //maxy-miny+1 INT32 line_index; //of scan line int index; //array index for daft compilers float top, bottom; //coords of blob INT32 width; //of blob TO_ROW *row; //current row TO_ROW_IT row_it = block->get_rows (); BLOBNBOX *blob; //current blob BLOBNBOX_IT blob_it; //iterator float length; //of skew vector BOX blob_box; //bounding box FCOORD rotation; //inverse of skew line_count = max_y - min_y + 1; length = sqrt (gradient * gradient + 1); rotation = FCOORD (1 / length, -gradient / length); for (line_index = 0; line_index < line_count; line_index++) deltas[line_index] = 0; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row = row_it.data (); blob_it.set_to_list (row->blob_list ()); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { blob = blob_it.data (); blob_box = blob->bounding_box (); blob_box.rotate (rotation);//de-skew it top = blob_box.top (); bottom = blob_box.bottom (); width = (INT32) floor ((FLOAT32) (blob_box.right () - blob_box.left ())); if ((INT32) floor (bottom) < min_y || (INT32) floor (bottom) - min_y >= line_count) fprintf (stderr, "Bad y coord of bottom, " INT32FORMAT "(" INT32FORMAT "," INT32FORMAT ")\n", (INT32) floor (bottom), min_y, max_y); //count transitions index = (INT32) floor (bottom) - min_y; deltas[index] += width; if ((INT32) floor (top) < min_y || (INT32) floor (top) - min_y >= line_count) fprintf (stderr, "Bad y coord of top, " INT32FORMAT "(" INT32FORMAT "," INT32FORMAT ")\n", (INT32) floor (top), min_y, max_y); index = (INT32) floor (top) - min_y; deltas[index] -= width; } } occupation[0] = deltas[0]; for (line_index = 1; line_index < line_count; line_index++) occupation[line_index] = occupation[line_index - 1] + deltas[line_index]; } /********************************************************************** * compute_occupation_threshold * * Compute thresholds for textline or not for the occupation array. **********************************************************************/ void compute_occupation_threshold( //project blobs INT32 low_window, //below result point INT32 high_window, //above result point INT32 line_count, //array sizes INT32 *occupation, //input projection INT32 *thresholds //output thresholds ) { INT32 line_index; //of thresholds line INT32 low_index; //in occupation INT32 high_index; //in occupation INT32 sum; //current average INT32 divisor; //to get thresholds INT32 min_index; //of min occ INT32 min_occ; //min in locality INT32 test_index; //for finding min divisor = (INT32) ceil ((low_window + high_window) / textord_occupancy_threshold); if (low_window + high_window < line_count) { for (sum = 0, high_index = 0; high_index < low_window; high_index++) sum += occupation[high_index]; for (low_index = 0; low_index < high_window; low_index++, high_index++) sum += occupation[high_index]; min_occ = occupation[0]; min_index = 0; for (test_index = 1; test_index < high_index; test_index++) { if (occupation[test_index] <= min_occ) { min_occ = occupation[test_index]; min_index = test_index; //find min in region } } for (line_index = 0; line_index < low_window; line_index++) thresholds[line_index] = (sum - min_occ) / divisor + min_occ; //same out to end for (low_index = 0; high_index < line_count; low_index++, high_index++) { sum -= occupation[low_index]; sum += occupation[high_index]; if (occupation[high_index] <= min_occ) { //find min in region min_occ = occupation[high_index]; min_index = high_index; } //lost min from region if (min_index <= low_index) { min_occ = occupation[low_index + 1]; min_index = low_index + 1; for (test_index = low_index + 2; test_index <= high_index; test_index++) { if (occupation[test_index] <= min_occ) { min_occ = occupation[test_index]; //find min in region min_index = test_index; } } } thresholds[line_index++] = (sum - min_occ) / divisor + min_occ; } } else { min_occ = occupation[0]; min_index = 0; for (sum = 0, low_index = 0; low_index < line_count; low_index++) { if (occupation[low_index] < min_occ) { min_occ = occupation[low_index]; min_index = low_index; } sum += occupation[low_index]; } line_index = 0; } for (; line_index < line_count; line_index++) thresholds[line_index] = (sum - min_occ) / divisor + min_occ; //same out to end } /********************************************************************** * compute_dropout_distances * * Compute the distance from each coordinate to the nearest dropout. **********************************************************************/ void compute_dropout_distances( //project blobs INT32 *occupation, //input projection INT32 *thresholds, //output thresholds INT32 line_count //array sizes ) { INT32 line_index; //of thresholds line INT32 distance; //from prev dropout INT32 next_dist; //to next dropout INT32 back_index; //for back filling INT32 prev_threshold; //before overwrite distance = -line_count; line_index = 0; do { do { distance--; prev_threshold = thresholds[line_index]; //distance from prev thresholds[line_index] = distance; line_index++; } while (line_index < line_count && (occupation[line_index] < thresholds[line_index] || occupation[line_index - 1] >= prev_threshold)); if (line_index < line_count) { back_index = line_index - 1; next_dist = 1; while (next_dist < -distance && back_index >= 0) { thresholds[back_index] = next_dist; back_index--; next_dist++; distance++; } distance = 1; } } while (line_index < line_count); } /********************************************************************** * expand_rows * * Expand each row to the least of its allowed size and touching its * neighbours. If the expansion would entirely swallow a neighbouring row * then do so. **********************************************************************/ void expand_rows( //find lines ICOORD page_tr, //top right TO_BLOCK *block, //block to do float gradient, //gradient to fit FCOORD rotation, //for drawing INT32 block_edge, //edge of block BOOL8 testing_on //correct orientation ) { BOOL8 swallowed_row; //eaten a neighbour float y_max, y_min; //new row limits float y_bottom, y_top; //allowed limits TO_ROW *test_row; //next row TO_ROW *row; //current row //iterators BLOBNBOX_IT blob_it = &block->blobs; TO_ROW_IT row_it = block->get_rows (); #ifndef GRAPHICS_DISABLED if (textord_show_expanded_rows && testing_on) { if (to_win == NO_WINDOW) create_to_win(page_tr); } #endif adjust_row_limits(block); //shift min,max. if (textord_new_initial_xheight) { if (block->get_rows ()->length () == 0) return; compute_row_stats(block, textord_show_expanded_rows &&testing_on); } assign_blobs_to_rows (block, &gradient, 4, TRUE, FALSE, FALSE); //get real membership if (block->get_rows ()->length () == 0) return; fit_parallel_rows(block, gradient, rotation, block_edge, textord_show_expanded_rows &&testing_on); if (!textord_new_initial_xheight) compute_row_stats(block, textord_show_expanded_rows &&testing_on); row_it.move_to_last (); do { row = row_it.data (); y_max = row->max_y (); //get current limits y_min = row->min_y (); y_bottom = row->intercept () - block->line_size * textord_expansion_factor * textord_merge_desc; y_top = row->intercept () + block->line_size * textord_expansion_factor * (textord_merge_x + textord_merge_asc); if (y_min > y_bottom) { //expansion allowed if (textord_show_expanded_rows && testing_on) tprintf("Expanding bottom of row at %f from %f to %f\n", row->intercept(), y_min, y_bottom); //expandable swallowed_row = TRUE; while (swallowed_row && !row_it.at_last ()) { swallowed_row = FALSE; //get next one test_row = row_it.data_relative (1); //overlaps space if (test_row->max_y () > y_bottom) { if (test_row->min_y () > y_bottom) { if (textord_show_expanded_rows && testing_on) tprintf("Eating row below at %f\n", test_row->intercept()); row_it.forward (); #ifndef GRAPHICS_DISABLED if (textord_show_expanded_rows && testing_on) plot_parallel_row(test_row, gradient, block_edge, WHITE, rotation); #endif blob_it.set_to_list (row->blob_list ()); blob_it.add_list_after (test_row->blob_list ()); //swallow complete row delete row_it.extract (); row_it.backward (); swallowed_row = TRUE; } else if (test_row->max_y () < y_min) { //shorter limit y_bottom = test_row->max_y (); if (textord_show_expanded_rows && testing_on) tprintf("Truncating limit to %f due to touching row at %f\n", y_bottom, test_row->intercept()); } else { y_bottom = y_min; //can't expand it if (textord_show_expanded_rows && testing_on) tprintf("Not expanding limit beyond %f due to touching row at %f\n", y_bottom, test_row->intercept()); } } } y_min = y_bottom; //expand it } if (y_max < y_top) { //expansion allowed if (textord_show_expanded_rows && testing_on) tprintf("Expanding top of row at %f from %f to %f\n", row->intercept(), y_max, y_top); swallowed_row = TRUE; while (swallowed_row && !row_it.at_first ()) { swallowed_row = FALSE; //get one above test_row = row_it.data_relative (-1); if (test_row->min_y () < y_top) { if (test_row->max_y () < y_top) { if (textord_show_expanded_rows && testing_on) tprintf("Eating row above at %f\n", test_row->intercept()); row_it.backward (); blob_it.set_to_list (row->blob_list ()); #ifndef GRAPHICS_DISABLED if (textord_show_expanded_rows && testing_on) plot_parallel_row(test_row, gradient, block_edge, WHITE, rotation); #endif blob_it.add_list_after (test_row->blob_list ()); //swallow complete row delete row_it.extract (); row_it.forward (); swallowed_row = TRUE; } else if (test_row->min_y () < y_max) { //shorter limit y_top = test_row->min_y (); if (textord_show_expanded_rows && testing_on) tprintf("Truncating limit to %f due to touching row at %f\n", y_top, test_row->intercept()); } else { y_top = y_max; //can't expand it if (textord_show_expanded_rows && testing_on) tprintf("Not expanding limit beyond %f due to touching row at %f\n", y_top, test_row->intercept()); } } } y_max = y_top; } //new limits row->set_limits (y_min, y_max); row_it.backward (); } while (!row_it.at_last ()); } /********************************************************************** * adjust_row_limits * * Change the limits of rows to suit the default fractions. **********************************************************************/ void adjust_row_limits( //tidy limits TO_BLOCK *block //block to do ) { TO_ROW *row; //current row float size; //size of row float ymax; //top of row float ymin; //bottom of row TO_ROW_IT row_it = block->get_rows (); if (textord_show_expanded_rows) tprintf("Adjusting row limits for block(%d,%d)\n", block->block->bounding_box().left(), block->block->bounding_box().top()); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row = row_it.data (); size = row->max_y () - row->min_y (); if (textord_show_expanded_rows) tprintf("Row at %f has min %f, max %f, size %f\n", row->intercept(), row->min_y(), row->max_y(), size); size /= textord_merge_x + textord_merge_asc + textord_merge_desc; ymax = size * (textord_merge_x + textord_merge_asc); ymin = -size * textord_merge_desc; row->set_limits (row->intercept () + ymin, row->intercept () + ymax); row->merged = FALSE; } } /********************************************************************** * compute_row_stats * * Compute the linespacing and offset. **********************************************************************/ void compute_row_stats( //find lines TO_BLOCK *block, //block to do BOOL8 testing_on //correct orientation ) { INT32 row_index; //of median TO_ROW *row; //current row TO_ROW *prev_row; //previous row float iqr; //inter quartile range TO_ROW_IT row_it = block->get_rows (); //number of rows INT16 rowcount = row_it.length (); TO_ROW **rows; //for choose nth rows = (TO_ROW **) alloc_mem (rowcount * sizeof (TO_ROW *)); if (rows == NULL) MEMORY_OUT.error ("compute_row_stats", ABORT, NULL); rowcount = 0; prev_row = NULL; row_it.move_to_last (); //start at bottom do { row = row_it.data (); if (prev_row != NULL) { rows[rowcount++] = prev_row; prev_row->spacing = row->intercept () - prev_row->intercept (); if (testing_on) tprintf ("Row at %g yields spacing of %g\n", row->intercept (), prev_row->spacing); } prev_row = row; row_it.backward (); } while (!row_it.at_last ()); block->key_row = prev_row; block->baseline_offset = fmod (prev_row->parallel_c (), block->line_spacing); if (testing_on) tprintf ("Blob based spacing=(%g,%g), offset=%g", block->line_size, block->line_spacing, block->baseline_offset); if (rowcount > 0) { row_index = choose_nth_item (rowcount * 3 / 4, rows, rowcount, sizeof (TO_ROW *), row_spacing_order); iqr = rows[row_index]->spacing; row_index = choose_nth_item (rowcount / 4, rows, rowcount, sizeof (TO_ROW *), row_spacing_order); iqr -= rows[row_index]->spacing; row_index = choose_nth_item (rowcount / 2, rows, rowcount, sizeof (TO_ROW *), row_spacing_order); block->key_row = rows[row_index]; if (testing_on) tprintf (" row based=%g(%g)", rows[row_index]->spacing, iqr); if (rowcount > 2 && iqr < rows[row_index]->spacing * textord_linespace_iqrlimit) { if (!textord_new_initial_xheight) { if (rows[row_index]->spacing < block->line_spacing && rows[row_index]->spacing > block->line_size) //within range block->line_size = rows[row_index]->spacing; //spacing=size else if (rows[row_index]->spacing > block->line_spacing) block->line_size = block->line_spacing; //too big so use max } else { if (rows[row_index]->spacing < block->line_spacing) block->line_size = rows[row_index]->spacing; else block->line_size = block->line_spacing; //too big so use max } if (block->line_size < textord_min_xheight) block->line_size = (float) textord_min_xheight; block->line_spacing = rows[row_index]->spacing; block->max_blob_size = block->line_spacing * textord_excess_blobsize; } block->baseline_offset = fmod (rows[row_index]->intercept (), block->line_spacing); } if (testing_on) tprintf ("\nEstimate line size=%g, spacing=%g, offset=%g\n", block->line_size, block->line_spacing, block->baseline_offset); free_mem(rows); } /********************************************************************** * compute_block_xheight * * Compute the xheight of the individual rows, then correlate them * and interpret ascenderless lines, correcting xheights. **********************************************************************/ void compute_block_xheight( //find lines TO_BLOCK *block, //block to do float gradient //global skew ) { TO_ROW *row; //current row int xh_count, desc_count; //no of samples float block_median; //median blob size int asc_count, cap_count; INT32 min_size, max_size; //limits on xheight INT32 evidence; //no of samples on row float xh_sum, desc_sum; //for averages float asc_sum, cap_sum; TO_ROW_IT row_it = block->get_rows (); STATS row_heights; //block evidence if (row_it.empty ()) return; //no rows block_median = median_block_xheight (block, gradient); block_median *= 2; if (block_median < block->line_size) block_median = block->line_size; // tprintf("Block median=%g, linesize=%g\n", // block_median,block->line_size); max_size = (INT32) ceil (block_median); min_size = (INT32) floor (block_median * textord_minxh); row_heights.set_range (min_size, max_size + 1); xh_count = desc_count = asc_count = cap_count = 0; xh_sum = desc_sum = asc_sum = cap_sum = 0.0f; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row = row_it.data (); evidence = compute_row_xheight (row, min_size, max_size, gradient); if (row->xheight > 0 && row->ascrise > 0) { row_heights.add ((INT32) row->xheight, evidence); xh_count += evidence; asc_sum += row->ascrise; asc_count++; } else if (row->xheight > 0) { cap_sum += row->xheight; //assume just caps cap_count++; } if (row->descdrop != 0) { desc_sum += row->descdrop; desc_count++; } } if (xh_count > 0) { //median xh_sum = row_heights.ile (0.5); asc_sum /= asc_count; } else if (cap_count > 0) { cap_sum /= cap_count; //must assume caps xh_sum = cap_sum * textord_merge_x / (textord_merge_x + textord_merge_asc); asc_sum = cap_sum * textord_merge_asc / (textord_merge_x + textord_merge_asc); } else { //default sizes xh_sum = block_median * textord_merge_x; asc_sum = block_median * textord_merge_asc; } if (desc_count > 0) { desc_sum /= desc_count; } else { desc_sum = xh_sum * textord_merge_desc / textord_merge_x; } // tprintf("Block average x height=%g, count=%d, asc=%g/%d, desc=%g/%d,cap=%g/%d\n", // xh_sum,xh_count,asc_sum,asc_count,desc_sum,desc_count, // cap_sum,cap_count); if (xh_sum < textord_min_xheight) xh_sum = (float) textord_min_xheight; block->xheight = xh_sum; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { correct_row_xheight (row_it.data (), xh_sum, asc_sum, desc_sum); } } /********************************************************************** * median_block_xheight * * Compute the linespacing and offset. **********************************************************************/ float median_block_xheight( //find lines TO_BLOCK *block, //block to do float gradient //global skew ) { TO_ROW *row; //current row float result; //output size float xcentre; //centre of blob TO_ROW_IT row_it = block->get_rows (); BLOBNBOX_IT blob_it; BLOBNBOX *blob; //current blob float *heights; //for choose nth INT32 blob_count; //blobs in block INT32 blob_index; //current blob blob_count = 0; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) blob_count += row_it.data ()->blob_list ()->length (); heights = (float *) alloc_mem (blob_count * sizeof (float)); if (heights == NULL) MEMORY_OUT.error ("compute_row_stats", ABORT, NULL); blob_index = 0; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row = row_it.data (); blob_it.set_to_list (row->blob_list ()); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { blob = blob_it.data (); if (!blob->joined_to_prev ()) { xcentre = (blob->bounding_box ().left () + blob->bounding_box ().right ()) / 2.0f; heights[blob_index] = blob->bounding_box ().top () - gradient * xcentre - row->parallel_c (); if (heights[blob_index] > 0) blob_index++; } } } ASSERT_HOST (blob_index > 0); //dont expect 0 blob_count = blob_index; blob_index = choose_nth_item (blob_count / 2, heights, blob_count); result = heights[blob_index]; free_mem(heights); return result; } /********************************************************************** * compute_row_xheight * * Estimate the xheight of this row. * Compute the ascender rise and descender drop at the same time. **********************************************************************/ INT32 compute_row_xheight( //find lines TO_ROW *row, //row to do INT32 min_height, //min xheight INT32 max_height, //max xheight float gradient //global skew ) { BOOL8 in_best_pile; //control of mode size INT32 prev_size; //previous size float xcentre; //centre of blob float height; //height of blob BLOBNBOX_IT blob_it = row->blob_list (); BLOBNBOX *blob; //current blob INT32 blob_count; //blobs in block INT32 x; //xheight index INT32 asc; //ascender index INT32 blob_index; //current blob INT32 mode_count; //no of modes INT32 best_count; //count of best x so far float ratio; //size ratio INT32 modes[MAX_HEIGHT_MODES]; //biggest piles STATS heights (min_height, max_height + 1); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { blob = blob_it.data (); if (!blob->joined_to_prev ()) { xcentre = (blob->bounding_box ().left () + blob->bounding_box ().right ()) / 2.0f; height = blob->bounding_box ().top (); if (textord_fix_xheight_bug) height -= row->baseline.y (xcentre); else height -= gradient * xcentre + row->parallel_c (); if (height >= min_height && height <= max_height && (!textord_xheight_tweak || height > textord_min_xheight)) heights.add ((INT32) floor (height + 0.5), 1); } } blob_index = heights.mode (); //find mode //get count of mode blob_count = heights.pile_count (blob_index); if (textord_debug_xheights) tprintf ("min_height=%d, max_height=%d, mode=%d, count=%d, total=%d,%d\n", min_height, max_height, blob_index, blob_count, heights.get_total (), row->blob_list ()->length ()); row->ascrise = 0.0f; row->xheight = 0.0f; row->descdrop = 0.0f; //undefined; in_best_pile = FALSE; prev_size = -MAX_INT32; best_count = 0; if (blob_count > 0) { //get biggest ones mode_count = compute_height_modes (&heights, min_height, max_height, modes, MAX_HEIGHT_MODES); for (x = 0; x < mode_count - 1; x++) { if (modes[x] != prev_size + 1) in_best_pile = FALSE; //had empty height if (heights.pile_count (modes[x]) >= blob_count * textord_xheight_mode_fraction && (in_best_pile || heights.pile_count (modes[x]) > best_count)) { for (asc = x + 1; asc < mode_count; asc++) { ratio = (float) modes[asc] / modes[x]; if (textord_ascx_ratio_min < ratio && ratio < textord_ascx_ratio_max && heights.pile_count (modes[asc]) >= blob_count * textord_ascheight_mode_fraction) { if (heights.pile_count (modes[x]) > best_count) { in_best_pile = TRUE; best_count = heights.pile_count (modes[x]); } // tprintf("X=%d, asc=%d, count=%d, ratio=%g\n", // modes[x],modes[asc]-modes[x], // heights.pile_count(modes[x]), // ratio); prev_size = modes[x]; row->xheight = (float) modes[x]; row->ascrise = (float) (modes[asc] - modes[x]); } } } } if (row->xheight == 0) { //single mode row->xheight = (float) blob_index; row->ascrise = 0.0f; if (textord_debug_xheights) tprintf ("Single mode xheight set to %g\n", row->xheight); } else if (textord_debug_xheights) tprintf ("Multi-mode xheight set to %g, asc=%g\n", row->xheight, row->ascrise); row->descdrop = (float) compute_row_descdrop (row, gradient); //find descenders } return best_count; } /********************************************************************** * compute_row_descdrop * * Estimate the descdrop of this row. **********************************************************************/ INT32 compute_row_descdrop( //find lines TO_ROW *row, //row to do float gradient //global skew ) { INT32 min_height = (INT32) floor (row->xheight * textord_descx_ratio_min); INT32 max_height = (INT32) floor (row->xheight * textord_descx_ratio_max); float xcentre; //centre of blob float height; //height of blob BLOBNBOX_IT blob_it = row->blob_list (); BLOBNBOX *blob; //current blob INT32 blob_count; //blobs in block INT32 blob_index; //current blob STATS heights (min_height, max_height + 1); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { blob = blob_it.data (); if (!blob->joined_to_prev ()) { xcentre = (blob->bounding_box ().left () + blob->bounding_box ().right ()) / 2.0f; height = gradient * xcentre + row->parallel_c () - blob->bounding_box ().bottom (); if (height >= min_height && height <= max_height) heights.add ((INT32) floor (height + 0.5), 1); } } blob_index = heights.mode (); //find mode //get count of mode blob_count = heights.pile_count (blob_index); return blob_count > 0 ? -blob_index : 0; } /********************************************************************** * compute_height_modes * * Find the top maxmodes values in the input array and put their * indices in the output in the order in which they occurred. **********************************************************************/ INT32 compute_height_modes( //find lines STATS *heights, //stats to search INT32 min_height, //bottom of range INT32 max_height, //top of range INT32 *modes, //output array INT32 maxmodes //size of modes ) { INT32 pile_count; //no in source pile INT32 src_count; //no of source entries INT32 src_index; //current entry INT32 least_count; //height of smalllest INT32 least_index; //index of least INT32 dest_count; //index in modes src_count = max_height + 1 - min_height; dest_count = 0; least_count = MAX_INT32; least_index = -1; for (src_index = 0; src_index < src_count; src_index++) { pile_count = heights->pile_count (min_height + src_index); if (pile_count > 0) { if (dest_count < maxmodes) { if (pile_count < least_count) { //find smallest in array least_count = pile_count; least_index = dest_count; } modes[dest_count++] = min_height + src_index; } else if (pile_count >= least_count) { while (least_index < maxmodes - 1) { modes[least_index] = modes[least_index + 1]; //shuffle up least_index++; } //new one on end modes[maxmodes - 1] = min_height + src_index; if (pile_count == least_count) { //new smallest least_index = maxmodes - 1; } else { least_count = heights->pile_count (modes[0]); least_index = 0; for (dest_count = 1; dest_count < maxmodes; dest_count++) { pile_count = heights->pile_count (modes[dest_count]); if (pile_count < least_count) { //find smallest least_count = pile_count; least_index = dest_count; } } } } } } return dest_count; } /********************************************************************** * correct_row_xheight * * Adjust the xheight etc of this row if not within reasonable limits * of the average for the block. **********************************************************************/ void correct_row_xheight( //fix bad values TO_ROW *row, //row to fix float xheight, //average values float ascrise, float descdrop) { if (textord_row_xheights) { if (row->xheight <= 0) row->xheight = xheight; if (row->ascrise < row->xheight * (textord_ascx_ratio_min - 1)) { if (row->xheight >= xheight * (1 - textord_xheight_error_margin) && row->xheight <= xheight * (1 + textord_xheight_error_margin)) { row->all_caps = FALSE; row->ascrise = ascrise; } else if (row->xheight >= (xheight + ascrise) * (1 - textord_xheight_error_margin) && row->xheight <= (xheight + ascrise) * (1 + textord_xheight_error_margin)) { row->all_caps = TRUE; //it was caps row->ascrise = row->xheight - xheight; row->xheight = xheight; } else { row->all_caps = TRUE; row->ascrise = row->xheight * ascrise / (xheight + ascrise); row->xheight -= row->ascrise; } } else row->all_caps = FALSE; row->ascrise = ascrise; if (row->descdrop >= -row->xheight * (textord_ascx_ratio_min - 1)) row->descdrop = descdrop; } else { if (row->xheight < xheight * (1 - textord_xheight_error_margin) || row->xheight > xheight * (1 + textord_xheight_error_margin)) row->xheight = xheight; //set to average row->all_caps = row->ascrise <= 0; if (row->ascrise < ascrise * (1 - textord_xheight_error_margin) || row->ascrise > ascrise * (1 + textord_xheight_error_margin)) row->ascrise = ascrise; //set to average if (row->descdrop < descdrop * (1 - textord_xheight_error_margin) || row->descdrop > descdrop * (1 + textord_xheight_error_margin)) row->descdrop = descdrop; //set to average } } /********************************************************************** * separate_underlines * * Test wide objects for being potential underlines. If they are then * put them in a separate list in the block. **********************************************************************/ void separate_underlines( //make rough chars TO_BLOCK *block, //block to do float gradient, //skew angle FCOORD rotation, //inverse landscape BOOL8 testing_on //correct orientation ) { BLOBNBOX *blob; //current blob PBLOB *poly_blob; //rotated blob C_BLOB *rotated_blob; //rotated blob TO_ROW *row; //current row float length; //of g_vec BOX blob_box; FCOORD blob_rotation; //inverse of rotation FCOORD g_vec; //skew rotation BLOBNBOX_IT blob_it; //iterator //iterator BLOBNBOX_IT under_it = &block->underlines; TO_ROW_IT row_it = block->get_rows (); //length of vector length = sqrt (1 + gradient * gradient); g_vec = FCOORD (1 / length, -gradient / length); blob_rotation = FCOORD (rotation.x (), -rotation.y ()); blob_rotation.rotate (g_vec); //unoding everything for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row = row_it.data (); //get blobs blob_it.set_to_list (row->blob_list ()); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { blob = blob_it.data (); blob_box = blob->bounding_box (); if (blob_box.width () > block->line_size * textord_underline_width) { if (textord_cblob_blockocc && blob->cblob () != NULL) { rotated_blob = crotate_cblob (blob->cblob (), blob_rotation); if (test_underline (testing_on && textord_show_final_rows, rotated_blob, (INT16) row->intercept (), (INT16) (block->line_size * (textord_merge_x + textord_merge_asc / 2.0f)))) { under_it.add_after_then_move (blob_it.extract ()); if (testing_on && textord_show_final_rows) { tprintf ("Underlined blob at (%d,%d)->(%d,%d) ", rotated_blob->bounding_box ().left (), rotated_blob->bounding_box ().bottom (), rotated_blob->bounding_box ().right (), rotated_blob->bounding_box ().top ()); tprintf ("(Was (%d,%d)->(%d,%d))\n", blob_box.left (), blob_box.bottom (), blob_box.right (), blob_box.top ()); } } delete rotated_blob; } else { if (blob->blob () != NULL) { // if (testing_on && textord_show_final_rows) // tprintf("Rotating by (%g,%g)\n", // blob_rotation.x(),blob_rotation.y()); poly_blob = rotate_blob (blob->blob (), blob_rotation); } else poly_blob = rotate_cblob (blob->cblob (), block->line_size, blob_rotation); if (test_underline (testing_on && textord_show_final_rows, poly_blob, row->intercept (), block->line_size * (textord_merge_x + textord_merge_asc / 2))) { if (testing_on && textord_show_final_rows) { tprintf ("Underlined blob at (%d,%d)->(%d,%d) ", poly_blob->bounding_box ().left (), poly_blob->bounding_box ().bottom (), poly_blob->bounding_box ().right (), poly_blob->bounding_box ().top ()); tprintf ("(Was (%d,%d)->(%d,%d))\n", blob_box.left (), blob_box.bottom (), blob_box.right (), blob_box.top ()); } under_it.add_after_then_move (blob_it.extract ()); } delete poly_blob; } } } } } /********************************************************************** * pre_associate_blobs * * Associate overlapping blobs and fake chop wide blobs. **********************************************************************/ void pre_associate_blobs( //make rough chars ICOORD page_tr, //top right TO_BLOCK *block, //block to do FCOORD rotation, //inverse landscape BOOL8 testing_on //correct orientation ) { #ifndef GRAPHICS_DISABLED COLOUR colour; //of boxes #endif INT16 overlap; //of adjacent boxes BLOBNBOX *blob; //current blob BLOBNBOX *nextblob; //next in list BOX blob_box; BOX next_box; //next blob FCOORD blob_rotation; //inverse of rotation BLOBNBOX_IT blob_it; //iterator BLOBNBOX_IT start_it; //iterator TO_ROW_IT row_it = block->get_rows (); #ifndef GRAPHICS_DISABLED colour = RED; #endif blob_rotation = FCOORD (rotation.x (), -rotation.y ()); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { //get blobs blob_it.set_to_list (row_it.data ()->blob_list ()); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { blob = blob_it.data (); blob_box = blob->bounding_box (); start_it = blob_it; //save start point // if (testing_on && textord_show_final_blobs) // { // tprintf("Blob at (%d,%d)->(%d,%d), addr=%x, count=%d\n", // blob_box.left(),blob_box.bottom(), // blob_box.right(),blob_box.top(), // (void*)blob,blob_it.length()); // } do { if (!blob_it.at_last ()) { nextblob = blob_it.data_relative (1); next_box = nextblob->bounding_box (); overlap = next_box.width (); if (blob_box.left () > next_box.left ()) overlap -= blob_box.left () - next_box.left (); if (blob_box.right () < next_box.right ()) overlap -= next_box.right () - blob_box.right (); if (overlap >= next_box.width () / 2 || overlap >= blob_box.width () / 2) { //merge new blob blob->merge (nextblob); //get bigger box blob_box = blob->bounding_box (); blob_it.forward (); } else overlap = -1; //no overlap } else overlap = -1; //no overlap } while (overlap >= 0); blob->chop (&start_it, &blob_it, blob_rotation, block->line_size * textord_merge_x * textord_chop_width); //attempt chop } #ifndef GRAPHICS_DISABLED if (testing_on && textord_show_final_blobs) { if (to_win == NO_WINDOW) create_to_win(page_tr); perimeter_color_index(to_win, colour); interior_style(to_win, INT_HOLLOW, TRUE); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { blob = blob_it.data (); blob_box = blob->bounding_box (); blob_box.rotate (rotation); if (!blob->joined_to_prev ()) { rectangle (to_win, blob_box.left (), blob_box.bottom (), blob_box.right (), blob_box.top ()); } } colour = (COLOUR) (colour + 1); if (colour > MAGENTA) colour = RED; } #endif } } /********************************************************************** * fit_parallel_rows * * Re-fit the rows in the block to the given gradient. **********************************************************************/ void fit_parallel_rows( //find lines TO_BLOCK *block, //block to do float gradient, //gradient to fit FCOORD rotation, //for drawing INT32 block_edge, //edge of block BOOL8 testing_on //correct orientation ) { #ifndef GRAPHICS_DISABLED COLOUR colour; //of row #endif TO_ROW_IT row_it = block->get_rows (); row_it.move_to_first (); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { if (row_it.data ()->blob_list ()->empty ()) delete row_it.extract (); //nothing in it else fit_parallel_lms (gradient, row_it.data ()); } #ifndef GRAPHICS_DISABLED if (testing_on) { colour = RED; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { plot_parallel_row (row_it.data (), gradient, block_edge, colour, rotation); colour = (COLOUR) (colour + 1); if (colour > MAGENTA) colour = RED; } } #endif row_it.sort (row_y_order); //may have gone out of order } /********************************************************************** * fit_parallel_lms * * Fit an LMS line to a row. * Make the fit parallel to the given gradient and set the * row accordingly. **********************************************************************/ void fit_parallel_lms( //sort function float gradient, //forced gradient TO_ROW *row //row to fit ) { float c; //fitted line int blobcount; //no of blobs BOX box; //blob box LMS lms (row->blob_list ()->length ()); //blobs BLOBNBOX_IT blob_it = row->blob_list (); blobcount = 0; for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { if (!blob_it.data ()->joined_to_prev ()) { box = blob_it.data ()->bounding_box (); lms. add (FCOORD ((box.left () + box.right ()) / 2.0, box.bottom ())); blobcount++; } } lms.constrained_fit (gradient, c); row->set_parallel_line (gradient, c, lms.error ()); if (textord_straight_baselines && blobcount > lms_line_trials) { lms.fit (gradient, c); } //set the other too row->set_line (gradient, c, lms.error ()); } /********************************************************************** * make_spline_rows * * Re-fit the rows in the block to the given gradient. **********************************************************************/ void make_spline_rows( //find lines TO_BLOCK *block, //block to do float gradient, //gradient to fit FCOORD rotation, //for drawing INT32 block_edge, //edge of block BOOL8 testing_on //correct orientation ) { #ifndef GRAPHICS_DISABLED COLOUR colour; //of row #endif TO_ROW_IT row_it = block->get_rows (); row_it.move_to_first (); for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { if (row_it.data ()->blob_list ()->empty ()) delete row_it.extract (); //nothing in it else make_baseline_spline (row_it.data (), block); } if (textord_old_baselines) { #ifndef GRAPHICS_DISABLED if (testing_on) { colour = RED; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row_it.data ()->baseline.plot (to_win, colour); colour = (COLOUR) (colour + 1); if (colour > MAGENTA) colour = RED; } } #endif make_old_baselines(block, testing_on); } #ifndef GRAPHICS_DISABLED if (testing_on) { colour = RED; for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { row_it.data ()->baseline.plot (to_win, colour); colour = (COLOUR) (colour + 1); if (colour > MAGENTA) colour = RED; } } #endif } /********************************************************************** * make_baseline_spline * * Fit an LMS line to a row. * Make the fit parallel to the given gradient and set the * row accordingly. **********************************************************************/ void make_baseline_spline( //sort function TO_ROW *row, //row to fit TO_BLOCK *block //block it came from ) { float b, c; //fitted curve float middle; //x middle of blob BOX box; //blob box LMS lms (row->blob_list ()->length ()); //blobs BLOBNBOX_IT blob_it = row->blob_list (); INT32 *xstarts; //spline boundaries double *coeffs; //quadratic coeffs INT32 segments; //no of segments INT32 segment; //current segment xstarts = (INT32 *) alloc_mem ((row->blob_list ()->length () + 1) * sizeof (INT32)); if (segment_baseline (row, block, segments, xstarts) && !textord_straight_baselines && !textord_parallel_baselines) { if (textord_quadratic_baselines) { coeffs = (double *) alloc_mem (segments * 3 * sizeof (double)); for (segment = 0; segment < segments; segment++) { lms.clear (); for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { if (!blob_it.data ()->joined_to_prev ()) { box = blob_it.data ()->bounding_box (); middle = (box.left () + box.right ()) / 2.0; if (middle >= xstarts[segment] && middle < xstarts[segment + 1]) { lms.add (FCOORD (middle, box.bottom ())); } } } if (textord_quadratic_baselines) lms.fit_quadratic (block->line_size * textord_spline_outlier_fraction, coeffs[segment * 3], b, c); else { lms.fit (b, c); coeffs[segment * 3] = 0; } coeffs[segment * 3 + 1] = b; coeffs[segment * 3 + 2] = c; } } else coeffs = linear_spline_baseline (row, block, segments, xstarts); } else { xstarts[1] = xstarts[segments]; segments = 1; coeffs = (double *) alloc_mem (3 * sizeof (double)); coeffs[0] = 0; coeffs[1] = row->line_m (); coeffs[2] = row->line_c (); } row->baseline = QSPLINE (segments, xstarts, coeffs); free_mem(coeffs); free_mem(xstarts); } /********************************************************************** * segment_baseline * * Divide the baseline up into segments which require a different * quadratic fitted to them. * Return TRUE if enough blobs were far enough away to need a quadratic. **********************************************************************/ BOOL8 segment_baseline ( //split baseline TO_ROW * row, //row to fit TO_BLOCK * block, //block it came from INT32 & segments, //no fo segments INT32 xstarts[] //coords of segments ) { BOOL8 needs_curve; //needs curved line int blobcount; //no of blobs int blobindex; //current blob int last_state; //above, on , below int state; //of current blob float yshift; //from baseline BOX box; //blob box BOX new_box; //new_it box float middle; //xcentre of blob //blobs BLOBNBOX_IT blob_it = row->blob_list (); BLOBNBOX_IT new_it = blob_it; //front end SORTED_FLOATS yshifts; //shifts from baseline needs_curve = FALSE; box = box_next_pre_chopped (&blob_it); xstarts[0] = box.left (); segments = 1; blobcount = row->blob_list ()->length (); if (textord_oldbl_debug) tprintf ("Segmenting baseline of %d blobs at (%d,%d)\n", blobcount, box.left (), box.bottom ()); if (blobcount <= textord_spline_medianwin || blobcount < textord_spline_minblobs) { blob_it.move_to_last (); box = blob_it.data ()->bounding_box (); xstarts[1] = box.right (); return FALSE; } last_state = 0; new_it.mark_cycle_pt (); for (blobindex = 0; blobindex < textord_spline_medianwin; blobindex++) { new_box = box_next_pre_chopped (&new_it); middle = (new_box.left () + new_box.right ()) / 2.0; yshift = new_box.bottom () - row->line_m () * middle - row->line_c (); //record shift yshifts.add (yshift, blobindex); if (new_it.cycled_list ()) { xstarts[1] = new_box.right (); return FALSE; } } for (blobcount = 0; blobcount < textord_spline_medianwin / 2; blobcount++) box = box_next_pre_chopped (&blob_it); do { new_box = box_next_pre_chopped (&new_it); //get middle one yshift = yshifts[textord_spline_medianwin / 2]; if (yshift > textord_spline_shift_fraction * block->line_size) state = 1; else if (-yshift > textord_spline_shift_fraction * block->line_size) state = -1; else state = 0; if (state != 0) needs_curve = TRUE; // tprintf("State=%d, prev=%d, shift=%g\n", // state,last_state,yshift); if (state != last_state && blobcount > textord_spline_minblobs) { xstarts[segments++] = box.left (); blobcount = 0; } last_state = state; yshifts.remove (blobindex - textord_spline_medianwin); box = box_next_pre_chopped (&blob_it); middle = (new_box.left () + new_box.right ()) / 2.0; yshift = new_box.bottom () - row->line_m () * middle - row->line_c (); yshifts.add (yshift, blobindex); blobindex++; blobcount++; } while (!new_it.cycled_list ()); if (blobcount > textord_spline_minblobs || segments == 1) { xstarts[segments] = new_box.right (); } else { xstarts[--segments] = new_box.right (); } if (textord_oldbl_debug) tprintf ("Made %d segments on row at (%d,%d)\n", segments, box.right (), box.bottom ()); return needs_curve; } /********************************************************************** * linear_spline_baseline * * Divide the baseline up into segments which require a different * quadratic fitted to them. * Return TRUE if enough blobs were far enough away to need a quadratic. **********************************************************************/ double * linear_spline_baseline ( //split baseline TO_ROW * row, //row to fit TO_BLOCK * block, //block it came from INT32 & segments, //no fo segments INT32 xstarts[] //coords of segments ) { int blobcount; //no of blobs int blobindex; //current blob int index1, index2; //blob numbers int blobs_per_segment; //blobs in each BOX box; //blob box BOX new_box; //new_it box float middle; //xcentre of blob //blobs BLOBNBOX_IT blob_it = row->blob_list (); BLOBNBOX_IT new_it = blob_it; //front end float b, c; //fitted curve LMS lms (row->blob_list ()->length ()); double *coeffs; //quadratic coeffs INT32 segment; //current segment box = box_next_pre_chopped (&blob_it); xstarts[0] = box.left (); blobcount = 1; while (!blob_it.at_first ()) { blobcount++; box = box_next_pre_chopped (&blob_it); } segments = blobcount / textord_spline_medianwin; if (segments < 1) segments = 1; blobs_per_segment = blobcount / segments; coeffs = (double *) alloc_mem (segments * 3 * sizeof (double)); if (textord_oldbl_debug) tprintf ("Linear splining baseline of %d blobs at (%d,%d), into %d segments of %d blobs\n", blobcount, box.left (), box.bottom (), segments, blobs_per_segment); segment = 1; for (index2 = 0; index2 < blobs_per_segment / 2; index2++) box_next_pre_chopped(&new_it); index1 = 0; blobindex = index2; do { blobindex += blobs_per_segment; lms.clear (); while (index1 < blobindex || segment == segments && index1 < blobcount) { box = box_next_pre_chopped (&blob_it); middle = (box.left () + box.right ()) / 2.0; lms.add (FCOORD (middle, box.bottom ())); index1++; if (index1 == blobindex - blobs_per_segment / 2 || index1 == blobcount - 1) { xstarts[segment] = box.left (); } } lms.fit (b, c); coeffs[segment * 3 - 3] = 0; coeffs[segment * 3 - 2] = b; coeffs[segment * 3 - 1] = c; segment++; if (segment > segments) break; blobindex += blobs_per_segment; lms.clear (); while (index2 < blobindex || segment == segments && index2 < blobcount) { new_box = box_next_pre_chopped (&new_it); middle = (new_box.left () + new_box.right ()) / 2.0; lms.add (FCOORD (middle, new_box.bottom ())); index2++; if (index2 == blobindex - blobs_per_segment / 2 || index2 == blobcount - 1) { xstarts[segment] = new_box.left (); } } lms.fit (b, c); coeffs[segment * 3 - 3] = 0; coeffs[segment * 3 - 2] = b; coeffs[segment * 3 - 1] = c; segment++; } while (segment <= segments); return coeffs; } /********************************************************************** * assign_blobs_to_rows * * Make enough rows to allocate all the given blobs to one. * If a block skew is given, use that, else attempt to track it. **********************************************************************/ void assign_blobs_to_rows( //find lines TO_BLOCK *block, //block to do float *gradient, //block skew int pass, //identification BOOL8 reject_misses, //chuck big ones out BOOL8 make_new_rows, //add rows for unmatched BOOL8 drawing_skew //draw smoothed skew ) { OVERLAP_STATE overlap_result; //what to do with it float ycoord; //current y float top, bottom; //of blob float g_length = 1.0f; //from gradient INT16 row_count; //no of rows INT16 left_x; //left edge INT16 last_x; //previous edge float block_skew; //y delta float smooth_factor; //for new coords float near_dist; //dist to nearest row ICOORD testpt; //testing only BLOBNBOX *blob; //current blob TO_ROW *row; //current row TO_ROW *dest_row; //row to put blob in //iterators BLOBNBOX_IT blob_it = &block->blobs; TO_ROW_IT row_it = block->get_rows (); ycoord = (block->block->bounding_box ().bottom () + block->block->bounding_box ().top ()) / 2.0f; if (gradient != NULL) g_length = sqrt (1 + *gradient * *gradient); #ifndef GRAPHICS_DISABLED if (drawing_skew) move2d (to_win, block->block->bounding_box ().left (), ycoord); #endif testpt = ICOORD (textord_test_x, textord_test_y); blob_it.sort (blob_x_order); smooth_factor = 1.0; block_skew = 0.0f; row_count = row_it.length (); //might have rows if (!blob_it.empty ()) { left_x = blob_it.data ()->bounding_box ().left (); } else { left_x = block->block->bounding_box ().left (); } last_x = left_x; for (blob_it.mark_cycle_pt (); !blob_it.cycled_list (); blob_it.forward ()) { blob = blob_it.data (); if (gradient != NULL) { block_skew = (1 - 1 / g_length) * blob->bounding_box ().bottom () + *gradient / g_length * blob->bounding_box ().left (); } else if (blob->bounding_box ().left () - last_x > block->line_size / 2 && last_x - left_x > block->line_size * 2 && textord_interpolating_skew) { // tprintf("Interpolating skew from %g",block_skew); block_skew *= (float) (blob->bounding_box ().left () - left_x) / (last_x - left_x); // tprintf("to %g\n",block_skew); } last_x = blob->bounding_box ().left (); top = blob->bounding_box ().top () - block_skew; bottom = blob->bounding_box ().bottom () - block_skew; #ifndef GRAPHICS_DISABLED if (drawing_skew) draw2d (to_win, blob->bounding_box ().left (), ycoord + block_skew); #endif if (!row_it.empty ()) { for (row_it.move_to_first (); !row_it.at_last () && row_it.data ()->min_y () > top; row_it.forward ()); row = row_it.data (); if (row->min_y () <= top && row->max_y () >= bottom) { //any overlap dest_row = row; overlap_result = most_overlapping_row (&row_it, dest_row, top, bottom, block->line_size, blob->bounding_box (). contains (testpt)); if (overlap_result == NEW_ROW && !reject_misses) overlap_result = ASSIGN; } else { overlap_result = NEW_ROW; if (!make_new_rows) { near_dist = row_it.data_relative (-1)->min_y () - top; //below bottom if (bottom < row->min_y ()) { if (row->min_y () - bottom <= (block->line_spacing - block->line_size) * textord_merge_desc) { //done it overlap_result = ASSIGN; dest_row = row; } } else if (near_dist > 0 && near_dist < bottom - row->max_y ()) { row_it.backward (); dest_row = row_it.data (); if (dest_row->min_y () - bottom <= (block->line_spacing - block->line_size) * textord_merge_desc) { //done it overlap_result = ASSIGN; } } else { if (top - row->max_y () <= (block->line_spacing - block->line_size) * (textord_overlap_x + textord_merge_asc)) { //done it overlap_result = ASSIGN; dest_row = row; } } } } if (overlap_result == ASSIGN) dest_row->add_blob (blob_it.extract (), top, bottom, block->line_size); if (overlap_result == NEW_ROW) { if (make_new_rows && top - bottom < block->max_blob_size) { dest_row = new TO_ROW (blob_it.extract (), top, bottom, block->line_size); row_count++; if (bottom > row_it.data ()->min_y ()) row_it.add_before_then_move (dest_row); //insert in right place else row_it.add_after_then_move (dest_row); smooth_factor = 1.0 / (row_count * textord_skew_lag + textord_skewsmooth_offset); } else overlap_result = REJECT; } } else if (make_new_rows && top - bottom < block->max_blob_size) { overlap_result = NEW_ROW; dest_row = new TO_ROW (blob_it.extract (), top, bottom, block->line_size); row_count++; row_it.add_after_then_move (dest_row); smooth_factor = 1.0 / (row_count * textord_skew_lag + textord_skewsmooth_offset2); } else overlap_result = REJECT; if (blob->bounding_box ().contains (testpt)) { if (overlap_result != REJECT) { tprintf ("Test blob assigned to row at (%g,%g) on pass %d\n", dest_row->min_y (), dest_row->max_y (), pass); } else { tprintf ("Test blob assigned to no row on pass %d\n", pass); } } if (overlap_result != REJECT) { while (!row_it.at_first () && row_it.data ()->min_y () > row_it.data_relative (-1)->min_y ()) { row = row_it.extract (); row_it.backward (); row_it.add_before_then_move (row); } while (!row_it.at_last () && row_it.data ()->min_y () < row_it.data_relative (1)->min_y ()) { row = row_it.extract (); row_it.forward (); //keep rows in order row_it.add_after_then_move (row); } block_skew = (1 - smooth_factor) * block_skew + smooth_factor * (blob->bounding_box ().bottom () - dest_row->initial_min_y ()); } } for (row_it.mark_cycle_pt (); !row_it.cycled_list (); row_it.forward ()) { if (row_it.data ()->blob_list ()->empty ()) delete row_it.extract (); //discard empty rows } } /********************************************************************** * most_overlapping_row * * Return the row which most overlaps the blob. **********************************************************************/ OVERLAP_STATE most_overlapping_row( //find best row TO_ROW_IT *row_it, //iterator TO_ROW *&best_row, //output row float top, //top of blob float bottom, //bottom of blob float rowsize, //max row size BOOL8 testing_blob //test stuff ) { OVERLAP_STATE result; //result of tests float overlap; //of blob & row float bestover; //nearest row float merge_top, merge_bottom; //size of merged row ICOORD testpt; //testing only TO_ROW *row; //current row TO_ROW *test_row; //for multiple overlaps BLOBNBOX_IT blob_it; //for merging rows result = ASSIGN; row = row_it->data (); bestover = top - bottom; if (top > row->max_y ()) bestover -= top - row->max_y (); if (bottom < row->min_y ()) //compute overlap bestover -= row->min_y () - bottom; if (testing_blob) { tprintf ("Test blob y=(%g,%g), row=(%f,%f), overlap=%f\n", bottom, top, row->min_y (), row->max_y (), bestover); } test_row = row; do { if (!row_it->at_last ()) { row_it->forward (); test_row = row_it->data (); if (test_row->min_y () <= top && test_row->max_y () >= bottom) { merge_top = test_row->max_y () > row->max_y ()? test_row->max_y () : row->max_y (); merge_bottom = test_row->min_y () < row->min_y ()? test_row->min_y () : row->min_y (); if (merge_top - merge_bottom <= rowsize) { if (testing_blob) { tprintf ("Merging rows at (%g,%g), (%g,%g)\n", row->min_y (), row->max_y (), test_row->min_y (), test_row->max_y ()); } test_row->set_limits (merge_bottom, merge_top); blob_it.set_to_list (test_row->blob_list ()); blob_it.add_list_after (row->blob_list ()); blob_it.sort (blob_x_order); row_it->backward (); delete row_it->extract (); row_it->forward (); bestover = -1.0f; //force replacement } overlap = top - bottom; if (top > test_row->max_y ()) overlap -= top - test_row->max_y (); if (bottom < test_row->min_y ()) overlap -= test_row->min_y () - bottom; if (bestover >= rowsize - 1 && overlap >= rowsize - 1) { result = REJECT; } if (overlap > bestover) { bestover = overlap; //find biggest overlap row = test_row; } if (testing_blob) { tprintf ("Test blob y=(%g,%g), row=(%f,%f), overlap=%f->%f\n", bottom, top, test_row->min_y (), test_row->max_y (), overlap, bestover); } } } } while (!row_it->at_last () && test_row->min_y () <= top && test_row->max_y () >= bottom); while (row_it->data () != row) row_it->backward (); //make it point to row //doesn't overlap much if (top - bottom - bestover > rowsize * textord_overlap_x && (!textord_fix_makerow_bug || bestover < rowsize * textord_overlap_x) && result == ASSIGN) result = NEW_ROW; //doesn't overlap enough best_row = row; return result; } /********************************************************************** * blob_x_order * * Sort function to sort blobs in x from page left. **********************************************************************/ int blob_x_order( //sort function const void *item1, //items to compare const void *item2) { //converted ptr BLOBNBOX *blob1 = *(BLOBNBOX **) item1; //converted ptr BLOBNBOX *blob2 = *(BLOBNBOX **) item2; if (blob1->bounding_box ().left () < blob2->bounding_box ().left ()) return -1; else if (blob1->bounding_box ().left () > blob2->bounding_box ().left ()) return 1; else return 0; } /********************************************************************** * row_y_order * * Sort function to sort rows in y from page top. **********************************************************************/ int row_y_order( //sort function const void *item1, //items to compare const void *item2) { //converted ptr TO_ROW *row1 = *(TO_ROW **) item1; //converted ptr TO_ROW *row2 = *(TO_ROW **) item2; if (row1->parallel_c () > row2->parallel_c ()) return -1; else if (row1->parallel_c () < row2->parallel_c ()) return 1; else return 0; } /********************************************************************** * row_spacing_order * * Qsort style function to compare 2 TO_ROWS based on their spacing value. **********************************************************************/ int row_spacing_order( //sort function const void *item1, //items to compare const void *item2) { //converted ptr TO_ROW *row1 = *(TO_ROW **) item1; //converted ptr TO_ROW *row2 = *(TO_ROW **) item2; if (row1->spacing < row2->spacing) return -1; else if (row1->spacing > row2->spacing) return 1; else return 0; }