/********************************************************************** * File: dppoint.cpp * Description: Simple generic dynamic programming class. * Author: Ray Smith * Created: Wed Mar 25 19:08:01 PDT 2009 * * (C) Copyright 2009, Google Inc. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #include "dppoint.h" #include "tprintf.h" namespace tesseract { // Solve the dynamic programming problem for the given array of points, with // the given size and cost function. // Steps backwards are limited to being between min_step and max_step // inclusive. // The return value is the tail of the best path. DPPoint* DPPoint::Solve(int min_step, int max_step, bool debug, CostFunc cost_func, int size, DPPoint* points) { if (size <= 0 || max_step < min_step || min_step >= size) return NULL; // Degenerate, but not necessarily an error. ASSERT_HOST(min_step > 0); // Infinite loop possible if this is not true. if (debug) tprintf("min = %d, max=%d\n", min_step, max_step); // Evaluate the total cost at each point. for (int i = 0; i < size; ++i) { for (int offset = min_step; offset <= max_step; ++offset) { DPPoint* prev = offset <= i ? points + i - offset : NULL; int64_t new_cost = (points[i].*cost_func)(prev); if (points[i].best_prev_ != NULL && offset > min_step * 2 && new_cost > points[i].total_cost_) break; // Find only the first minimum if going over twice the min. } points[i].total_cost_ += points[i].local_cost_; if (debug) { tprintf("At point %d, local cost=%d, total_cost=%d, steps=%d\n", i, points[i].local_cost_, points[i].total_cost_, points[i].total_steps_); } } // Now find the end of the best path and return it. int best_cost = points[size - 1].total_cost_; int best_end = size - 1; for (int end = best_end - 1; end >= size - min_step; --end) { int cost = points[end].total_cost_; if (cost < best_cost) { best_cost = cost; best_end = end; } } return points + best_end; } // A CostFunc that takes the variance of step into account in the cost. int64_t DPPoint::CostWithVariance(const DPPoint* prev) { if (prev == NULL || prev == this) { UpdateIfBetter(0, 1, NULL, 0, 0, 0); return 0; } int delta = this - prev; int32_t n = prev->n_ + 1; int32_t sig_x = prev->sig_x_ + delta; int64_t sig_xsq = prev->sig_xsq_ + delta * delta; int64_t cost = (sig_xsq - sig_x * sig_x / n) / n; cost += prev->total_cost_; UpdateIfBetter(cost, prev->total_steps_ + 1, prev, n, sig_x, sig_xsq); return cost; } // Update the other members if the cost is lower. void DPPoint::UpdateIfBetter(int64_t cost, int32_t steps, const DPPoint* prev, int32_t n, int32_t sig_x, int64_t sig_xsq) { if (cost < total_cost_) { total_cost_ = cost; total_steps_ = steps; best_prev_ = prev; n_ = n; sig_x_ = sig_x; sig_xsq_ = sig_xsq; } } } // namespace tesseract.