/********************************************************************** * File: linlsq.h (Formerly llsq.h) * Description: Linear Least squares fitting code. * Author: Ray Smith * Created: Thu Sep 12 08:44:51 BST 1991 * * (C) Copyright 1991, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #ifndef TESSERACT_CCSTRUCT_LINLSQ_H_ #define TESSERACT_CCSTRUCT_LINLSQ_H_ #include "points.h" #include "params.h" class LLSQ { public: LLSQ() { // constructor clear(); // set to zeros } void clear(); // initialize // Adds an element with a weight of 1. void add(double x, double y); // Adds an element with a specified weight. void add(double x, double y, double weight); // Adds a whole LLSQ. void add(const LLSQ& other); // Deletes an element with a weight of 1. void remove(double x, double y); int32_t count() const { // no of elements return static_cast(total_weight + 0.5); } double m() const; // get gradient double c(double m) const; // get constant double rms(double m, double c) const; // get error double pearson() const; // get correlation coefficient. // Returns the x,y means as an FCOORD. FCOORD mean_point() const; // Returns the average sum of squared perpendicular error from a line // through mean_point() in the direction dir. double rms_orth(const FCOORD &dir) const; // Returns the direction of the fitted line as a unit vector, using the // least mean squared perpendicular distance. The line runs through the // mean_point, i.e. a point p on the line is given by: // p = mean_point() + lambda * vector_fit() for some real number lambda. // Note that the result (0<=x<=1, -1<=y<=-1) is directionally ambiguous // and may be negated without changing its meaning, since a line is only // unique to a range of pi radians. // Modernists prefer to think of this as an Eigenvalue problem, but // Pearson had the simple solution in 1901. // // Note that this is equivalent to returning the Principal Component in PCA, // or the eigenvector corresponding to the largest eigenvalue in the // covariance matrix. FCOORD vector_fit() const; // Returns the covariance. double covariance() const { if (total_weight > 0.0) return (sigxy - sigx * sigy / total_weight) / total_weight; else return 0.0; } double x_variance() const { if (total_weight > 0.0) return (sigxx - sigx * sigx / total_weight) / total_weight; else return 0.0; } double y_variance() const { if (total_weight > 0.0) return (sigyy - sigy * sigy / total_weight) / total_weight; else return 0.0; } private: double total_weight; // no of elements or sum of weights. double sigx; // sum of x double sigy; // sum of y double sigxx; // sum x squared double sigxy; // sum of xy double sigyy; // sum y squared }; // Returns the median value of the vector, given that the values are // circular, with the given modulus. Values may be signed or unsigned, // eg range from -pi to pi (modulus 2pi) or from 0 to 2pi (modulus 2pi). // NOTE that the array is shuffled, but the time taken is linear. // An assumption is made that most of the values are spread over no more than // half the range, but wrap-around is accounted for if the median is near // the wrap-around point. // Cannot be a member of GenericVector, as it makes heavy used of LLSQ. // T must be an integer or float/double type. template T MedianOfCircularValues(T modulus, GenericVector* v) { LLSQ stats; T halfrange = static_cast(modulus / 2); int num_elements = v->size(); for (int i = 0; i < num_elements; ++i) { stats.add((*v)[i], (*v)[i] + halfrange); } bool offset_needed = stats.y_variance() < stats.x_variance(); if (offset_needed) { for (int i = 0; i < num_elements; ++i) { (*v)[i] += halfrange; } } int median_index = v->choose_nth_item(num_elements / 2); if (offset_needed) { for (int i = 0; i < num_elements; ++i) { (*v)[i] -= halfrange; } } return (*v)[median_index]; } #endif // TESSERACT_CCSTRUCT_LINLSQ_H_