/////////////////////////////////////////////////////////////////////// // File: input.cpp // Description: Input layer class for neural network implementations. // Author: Ray Smith // Created: Thu Mar 13 09:10:34 PDT 2014 // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "input.h" #include "allheaders.h" #include "imagedata.h" #include "pageres.h" #include "scrollview.h" namespace tesseract { // Max height for variable height inputs before scaling anyway. const int kMaxInputHeight = 48; Input::Input(const STRING& name, int ni, int no) : Network(NT_INPUT, name, ni, no), cached_x_scale_(1) {} Input::Input(const STRING& name, const StaticShape& shape) : Network(NT_INPUT, name, shape.height(), shape.depth()), shape_(shape), cached_x_scale_(1) { if (shape.height() == 1) ni_ = shape.depth(); } Input::~Input() { } // Writes to the given file. Returns false in case of error. bool Input::Serialize(TFile* fp) const { if (!Network::Serialize(fp)) return false; if (fp->FWrite(&shape_, sizeof(shape_), 1) != 1) return false; return true; } // Reads from the given file. Returns false in case of error. bool Input::DeSerialize(TFile* fp) { return fp->FReadEndian(&shape_, sizeof(shape_), 1) == 1; } // Returns an integer reduction factor that the network applies to the // time sequence. Assumes that any 2-d is already eliminated. Used for // scaling bounding boxes of truth data. int Input::XScaleFactor() const { return 1; } // Provides the (minimum) x scale factor to the network (of interest only to // input units) so they can determine how to scale bounding boxes. void Input::CacheXScaleFactor(int factor) { cached_x_scale_ = factor; } // Runs forward propagation of activations on the input line. // See Network for a detailed discussion of the arguments. void Input::Forward(bool debug, const NetworkIO& input, const TransposedArray* input_transpose, NetworkScratch* scratch, NetworkIO* output) { *output = input; } // Runs backward propagation of errors on the deltas line. // See NetworkCpp for a detailed discussion of the arguments. bool Input::Backward(bool debug, const NetworkIO& fwd_deltas, NetworkScratch* scratch, NetworkIO* back_deltas) { tprintf("Input::Backward should not be called!!\n"); return false; } // Creates and returns a Pix of appropriate size for the network from the // image_data. If non-null, *image_scale returns the image scale factor used. // Returns nullptr on error. /* static */ Pix* Input::PrepareLSTMInputs(const ImageData& image_data, const Network* network, int min_width, TRand* randomizer, float* image_scale) { // Note that NumInputs() is defined as input image height. int target_height = network->NumInputs(); int width, height; Pix* pix = image_data.PreScale(target_height, kMaxInputHeight, image_scale, &width, &height, nullptr); if (pix == nullptr) { tprintf("Bad pix from ImageData!\n"); return nullptr; } if (width <= min_width || height < min_width) { tprintf("Image too small to scale!! (%dx%d vs min width of %d)\n", width, height, min_width); pixDestroy(&pix); return nullptr; } return pix; } // Converts the given pix to a NetworkIO of height and depth appropriate to the // given StaticShape: // If depth == 3, convert to 24 bit color, otherwise normalized grey. // Scale to target height, if the shape's height is > 1, or its depth if the // height == 1. If height == 0 then no scaling. // NOTE: It isn't safe for multiple threads to call this on the same pix. /* static */ void Input::PreparePixInput(const StaticShape& shape, const Pix* pix, TRand* randomizer, NetworkIO* input) { bool color = shape.depth() == 3; Pix* var_pix = const_cast(pix); int depth = pixGetDepth(var_pix); Pix* normed_pix = nullptr; // On input to BaseAPI, an image is forced to be 1, 8 or 24 bit, without // colormap, so we just have to deal with depth conversion here. if (color) { // Force RGB. if (depth == 32) normed_pix = pixClone(var_pix); else normed_pix = pixConvertTo32(var_pix); } else { // Convert non-8-bit images to 8 bit. if (depth == 8) normed_pix = pixClone(var_pix); else normed_pix = pixConvertTo8(var_pix, false); } int height = pixGetHeight(normed_pix); int target_height = shape.height(); if (target_height == 1) target_height = shape.depth(); if (target_height != 0 && target_height != height) { // Get the scaled image. float im_factor = static_cast(target_height) / height; Pix* scaled_pix = pixScale(normed_pix, im_factor, im_factor); pixDestroy(&normed_pix); normed_pix = scaled_pix; } input->FromPix(shape, normed_pix, randomizer); pixDestroy(&normed_pix); } } // namespace tesseract.