// Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifdef _WIN32 #include #else #include #include #endif #include #include "openclwrapper.h" #include "oclkernels.h" // for micro-benchmark #include "otsuthr.h" #include "thresholder.h" #if ON_APPLE #include #include #endif #define CALLOC LEPT_CALLOC #define FREE LEPT_FREE #ifdef USE_OPENCL #include "opencl_device_selection.h" GPUEnv OpenclDevice::gpuEnv; bool OpenclDevice::deviceIsSelected = false; ds_device OpenclDevice::selectedDevice; int OpenclDevice::isInited = 0; static l_int32 MORPH_BC = ASYMMETRIC_MORPH_BC; static const l_uint32 lmask32[] = { 0x80000000, 0xc0000000, 0xe0000000, 0xf0000000, 0xf8000000, 0xfc000000, 0xfe000000, 0xff000000, 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000, 0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000, 0xffff8000, 0xffffc000, 0xffffe000, 0xfffff000, 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00, 0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0, 0xfffffff8, 0xfffffffc, 0xfffffffe, 0xffffffff}; static const l_uint32 rmask32[] = { 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 0x0001ffff, 0x0003ffff, 0x0007ffff, 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff, 0x00ffffff, 0x01ffffff, 0x03ffffff, 0x07ffffff, 0x0fffffff, 0x1fffffff, 0x3fffffff, 0x7fffffff, 0xffffffff}; static cl_mem pixsCLBuffer, pixdCLBuffer, pixdCLIntermediate; // Morph operations buffers static cl_mem pixThBuffer; // output from thresholdtopix calculation static cl_int clStatus; static KernelEnv rEnv; #define DS_TAG_VERSION "" #define DS_TAG_VERSION_END "" #define DS_TAG_DEVICE "" #define DS_TAG_DEVICE_END "" #define DS_TAG_SCORE "" #define DS_TAG_SCORE_END "" #define DS_TAG_DEVICE_TYPE "" #define DS_TAG_DEVICE_TYPE_END "" #define DS_TAG_DEVICE_NAME "" #define DS_TAG_DEVICE_NAME_END "" #define DS_TAG_DEVICE_DRIVER_VERSION "" #define DS_TAG_DEVICE_DRIVER_VERSION_END "" #define DS_DEVICE_NATIVE_CPU_STRING "native_cpu" #define DS_DEVICE_NAME_LENGTH 256 typedef enum { DS_EVALUATE_ALL, DS_EVALUATE_NEW_ONLY } ds_evaluation_type; typedef struct { unsigned int numDevices; ds_device *devices; const char *version; } ds_profile; typedef enum { DS_SUCCESS = 0, DS_INVALID_PROFILE = 1000, DS_MEMORY_ERROR, DS_INVALID_PERF_EVALUATOR_TYPE, DS_INVALID_PERF_EVALUATOR, DS_PERF_EVALUATOR_ERROR, DS_FILE_ERROR, DS_UNKNOWN_DEVICE_TYPE, DS_PROFILE_FILE_ERROR, DS_SCORE_SERIALIZER_ERROR, DS_SCORE_DESERIALIZER_ERROR } ds_status; // Pointer to a function that calculates the score of a device (ex: // device->score) update the data size of score. The encoding and the format // of the score data is implementation defined. The function should return // DS_SUCCESS if there's no error to be reported. typedef ds_status (*ds_perf_evaluator)(ds_device *device, void *data); // deallocate memory used by score typedef ds_status (*ds_score_release)(void *score); static ds_status releaseDSProfile(ds_profile *profile, ds_score_release sr) { ds_status status = DS_SUCCESS; if (profile != nullptr) { if (profile->devices != nullptr && sr != nullptr) { unsigned int i; for (i = 0; i < profile->numDevices; i++) { free(profile->devices[i].oclDeviceName); free(profile->devices[i].oclDriverVersion); status = sr(profile->devices[i].score); if (status != DS_SUCCESS) break; } free(profile->devices); } free(profile); } return status; } static ds_status initDSProfile(ds_profile **p, const char *version) { int numDevices; cl_uint numPlatforms; cl_platform_id *platforms = nullptr; cl_device_id *devices = nullptr; ds_status status = DS_SUCCESS; unsigned int next; unsigned int i; if (p == nullptr) return DS_INVALID_PROFILE; ds_profile *profile = (ds_profile *)malloc(sizeof(ds_profile)); if (profile == nullptr) return DS_MEMORY_ERROR; memset(profile, 0, sizeof(ds_profile)); clGetPlatformIDs(0, nullptr, &numPlatforms); if (numPlatforms > 0) { platforms = (cl_platform_id *)malloc(numPlatforms * sizeof(cl_platform_id)); if (platforms == nullptr) { status = DS_MEMORY_ERROR; goto cleanup; } clGetPlatformIDs(numPlatforms, platforms, nullptr); } numDevices = 0; for (i = 0; i < (unsigned int)numPlatforms; i++) { cl_uint num; clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, 0, nullptr, &num); numDevices += num; } if (numDevices > 0) { devices = (cl_device_id *)malloc(numDevices * sizeof(cl_device_id)); if (devices == nullptr) { status = DS_MEMORY_ERROR; goto cleanup; } } profile->numDevices = numDevices + 1; // +1 to numDevices to include the native CPU profile->devices = (ds_device *)malloc(profile->numDevices * sizeof(ds_device)); if (profile->devices == nullptr) { profile->numDevices = 0; status = DS_MEMORY_ERROR; goto cleanup; } memset(profile->devices, 0, profile->numDevices * sizeof(ds_device)); next = 0; for (i = 0; i < (unsigned int)numPlatforms; i++) { cl_uint num; unsigned j; clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, numDevices, devices, &num); for (j = 0; j < num; j++, next++) { char buffer[DS_DEVICE_NAME_LENGTH]; size_t length; profile->devices[next].type = DS_DEVICE_OPENCL_DEVICE; profile->devices[next].oclDeviceID = devices[j]; clGetDeviceInfo(profile->devices[next].oclDeviceID, CL_DEVICE_NAME, DS_DEVICE_NAME_LENGTH, &buffer, nullptr); length = strlen(buffer); profile->devices[next].oclDeviceName = (char *)malloc(length + 1); memcpy(profile->devices[next].oclDeviceName, buffer, length + 1); clGetDeviceInfo(profile->devices[next].oclDeviceID, CL_DRIVER_VERSION, DS_DEVICE_NAME_LENGTH, &buffer, nullptr); length = strlen(buffer); profile->devices[next].oclDriverVersion = (char *)malloc(length + 1); memcpy(profile->devices[next].oclDriverVersion, buffer, length + 1); } } profile->devices[next].type = DS_DEVICE_NATIVE_CPU; profile->version = version; cleanup: free(platforms); free(devices); if (status == DS_SUCCESS) { *p = profile; } else { if (profile) { free(profile->devices); free(profile); } } return status; } static ds_status profileDevices(ds_profile *profile, const ds_evaluation_type type, ds_perf_evaluator evaluator, void *evaluatorData, unsigned int *numUpdates) { ds_status status = DS_SUCCESS; unsigned int i; unsigned int updates = 0; if (profile == nullptr) { return DS_INVALID_PROFILE; } if (evaluator == nullptr) { return DS_INVALID_PERF_EVALUATOR; } for (i = 0; i < profile->numDevices; i++) { ds_status evaluatorStatus; switch (type) { case DS_EVALUATE_NEW_ONLY: if (profile->devices[i].score != nullptr) break; // else fall through case DS_EVALUATE_ALL: evaluatorStatus = evaluator(profile->devices + i, evaluatorData); if (evaluatorStatus != DS_SUCCESS) { status = evaluatorStatus; return status; } updates++; break; default: return DS_INVALID_PERF_EVALUATOR_TYPE; break; }; } if (numUpdates) *numUpdates = updates; return status; } static const char *findString(const char *contentStart, const char *contentEnd, const char *string) { size_t stringLength; const char *currentPosition; const char *found = nullptr; stringLength = strlen(string); currentPosition = contentStart; for (currentPosition = contentStart; currentPosition < contentEnd; currentPosition++) { if (*currentPosition == string[0]) { if (currentPosition + stringLength < contentEnd) { if (strncmp(currentPosition, string, stringLength) == 0) { found = currentPosition; break; } } } } return found; } static ds_status readProFile(const char *fileName, char **content, size_t *contentSize) { size_t size = 0; *contentSize = 0; *content = nullptr; FILE *input = fopen(fileName, "rb"); if (input == nullptr) { return DS_FILE_ERROR; } fseek(input, 0L, SEEK_END); size = ftell(input); rewind(input); char *binary = (char *)malloc(size); if (binary == nullptr) { fclose(input); return DS_FILE_ERROR; } fread(binary, sizeof(char), size, input); fclose(input); *contentSize = size; *content = binary; return DS_SUCCESS; } typedef ds_status (*ds_score_deserializer)(ds_device *device, const unsigned char *serializedScore, unsigned int serializedScoreSize); static ds_status readProfileFromFile(ds_profile *profile, ds_score_deserializer deserializer, const char *file) { ds_status status = DS_SUCCESS; char *contentStart = nullptr; const char *contentEnd = nullptr; size_t contentSize; if (profile == nullptr) return DS_INVALID_PROFILE; status = readProFile(file, &contentStart, &contentSize); if (status == DS_SUCCESS) { const char *currentPosition; const char *dataStart; const char *dataEnd; contentEnd = contentStart + contentSize; currentPosition = contentStart; // parse the version string dataStart = findString(currentPosition, contentEnd, DS_TAG_VERSION); if (dataStart == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } dataStart += strlen(DS_TAG_VERSION); dataEnd = findString(dataStart, contentEnd, DS_TAG_VERSION_END); if (dataEnd == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } size_t versionStringLength = strlen(profile->version); if (versionStringLength + dataStart != dataEnd || strncmp(profile->version, dataStart, versionStringLength) != 0) { // version mismatch status = DS_PROFILE_FILE_ERROR; goto cleanup; } currentPosition = dataEnd + strlen(DS_TAG_VERSION_END); // parse the device information while (1) { unsigned int i; const char *deviceTypeStart; const char *deviceTypeEnd; ds_device_type deviceType; const char *deviceNameStart; const char *deviceNameEnd; const char *deviceScoreStart; const char *deviceScoreEnd; const char *deviceDriverStart; const char *deviceDriverEnd; dataStart = findString(currentPosition, contentEnd, DS_TAG_DEVICE); if (dataStart == nullptr) { // nothing useful remain, quit... break; } dataStart += strlen(DS_TAG_DEVICE); dataEnd = findString(dataStart, contentEnd, DS_TAG_DEVICE_END); if (dataEnd == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } // parse the device type deviceTypeStart = findString(dataStart, contentEnd, DS_TAG_DEVICE_TYPE); if (deviceTypeStart == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } deviceTypeStart += strlen(DS_TAG_DEVICE_TYPE); deviceTypeEnd = findString(deviceTypeStart, contentEnd, DS_TAG_DEVICE_TYPE_END); if (deviceTypeEnd == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } memcpy(&deviceType, deviceTypeStart, sizeof(ds_device_type)); // parse the device name if (deviceType == DS_DEVICE_OPENCL_DEVICE) { deviceNameStart = findString(dataStart, contentEnd, DS_TAG_DEVICE_NAME); if (deviceNameStart == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } deviceNameStart += strlen(DS_TAG_DEVICE_NAME); deviceNameEnd = findString(deviceNameStart, contentEnd, DS_TAG_DEVICE_NAME_END); if (deviceNameEnd == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } deviceDriverStart = findString(dataStart, contentEnd, DS_TAG_DEVICE_DRIVER_VERSION); if (deviceDriverStart == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } deviceDriverStart += strlen(DS_TAG_DEVICE_DRIVER_VERSION); deviceDriverEnd = findString(deviceDriverStart, contentEnd, DS_TAG_DEVICE_DRIVER_VERSION_END); if (deviceDriverEnd == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } // check if this device is on the system for (i = 0; i < profile->numDevices; i++) { if (profile->devices[i].type == DS_DEVICE_OPENCL_DEVICE) { size_t actualDeviceNameLength; size_t driverVersionLength; actualDeviceNameLength = strlen(profile->devices[i].oclDeviceName); driverVersionLength = strlen(profile->devices[i].oclDriverVersion); if (deviceNameStart + actualDeviceNameLength == deviceNameEnd && deviceDriverStart + driverVersionLength == deviceDriverEnd && strncmp(profile->devices[i].oclDeviceName, deviceNameStart, actualDeviceNameLength) == 0 && strncmp(profile->devices[i].oclDriverVersion, deviceDriverStart, driverVersionLength) == 0) { deviceScoreStart = findString(dataStart, contentEnd, DS_TAG_SCORE); if (deviceNameStart == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } deviceScoreStart += strlen(DS_TAG_SCORE); deviceScoreEnd = findString(deviceScoreStart, contentEnd, DS_TAG_SCORE_END); status = deserializer(profile->devices + i, (const unsigned char *)deviceScoreStart, deviceScoreEnd - deviceScoreStart); if (status != DS_SUCCESS) { goto cleanup; } } } } } else if (deviceType == DS_DEVICE_NATIVE_CPU) { for (i = 0; i < profile->numDevices; i++) { if (profile->devices[i].type == DS_DEVICE_NATIVE_CPU) { deviceScoreStart = findString(dataStart, contentEnd, DS_TAG_SCORE); if (deviceScoreStart == nullptr) { status = DS_PROFILE_FILE_ERROR; goto cleanup; } deviceScoreStart += strlen(DS_TAG_SCORE); deviceScoreEnd = findString(deviceScoreStart, contentEnd, DS_TAG_SCORE_END); status = deserializer(profile->devices + i, (const unsigned char *)deviceScoreStart, deviceScoreEnd - deviceScoreStart); if (status != DS_SUCCESS) { goto cleanup; } } } } // skip over the current one to find the next device currentPosition = dataEnd + strlen(DS_TAG_DEVICE_END); } } cleanup: free(contentStart); return status; } typedef ds_status (*ds_score_serializer)(ds_device *device, void **serializedScore, unsigned int *serializedScoreSize); static ds_status writeProfileToFile(ds_profile *profile, ds_score_serializer serializer, const char *file) { ds_status status = DS_SUCCESS; if (profile == nullptr) return DS_INVALID_PROFILE; FILE *profileFile = fopen(file, "wb"); if (profileFile == nullptr) { status = DS_FILE_ERROR; } else { unsigned int i; // write version string fwrite(DS_TAG_VERSION, sizeof(char), strlen(DS_TAG_VERSION), profileFile); fwrite(profile->version, sizeof(char), strlen(profile->version), profileFile); fwrite(DS_TAG_VERSION_END, sizeof(char), strlen(DS_TAG_VERSION_END), profileFile); fwrite("\n", sizeof(char), 1, profileFile); for (i = 0; i < profile->numDevices && status == DS_SUCCESS; i++) { void *serializedScore; unsigned int serializedScoreSize; fwrite(DS_TAG_DEVICE, sizeof(char), strlen(DS_TAG_DEVICE), profileFile); fwrite(DS_TAG_DEVICE_TYPE, sizeof(char), strlen(DS_TAG_DEVICE_TYPE), profileFile); fwrite(&profile->devices[i].type, sizeof(ds_device_type), 1, profileFile); fwrite(DS_TAG_DEVICE_TYPE_END, sizeof(char), strlen(DS_TAG_DEVICE_TYPE_END), profileFile); switch (profile->devices[i].type) { case DS_DEVICE_NATIVE_CPU: { // There's no need to emit a device name for the native CPU device. /* fwrite(DS_TAG_DEVICE_NAME, sizeof(char), strlen(DS_TAG_DEVICE_NAME), profileFile); fwrite(DS_DEVICE_NATIVE_CPU_STRING,sizeof(char), strlen(DS_DEVICE_NATIVE_CPU_STRING), profileFile); fwrite(DS_TAG_DEVICE_NAME_END, sizeof(char), strlen(DS_TAG_DEVICE_NAME_END), profileFile); */ } break; case DS_DEVICE_OPENCL_DEVICE: { fwrite(DS_TAG_DEVICE_NAME, sizeof(char), strlen(DS_TAG_DEVICE_NAME), profileFile); fwrite(profile->devices[i].oclDeviceName, sizeof(char), strlen(profile->devices[i].oclDeviceName), profileFile); fwrite(DS_TAG_DEVICE_NAME_END, sizeof(char), strlen(DS_TAG_DEVICE_NAME_END), profileFile); fwrite(DS_TAG_DEVICE_DRIVER_VERSION, sizeof(char), strlen(DS_TAG_DEVICE_DRIVER_VERSION), profileFile); fwrite(profile->devices[i].oclDriverVersion, sizeof(char), strlen(profile->devices[i].oclDriverVersion), profileFile); fwrite(DS_TAG_DEVICE_DRIVER_VERSION_END, sizeof(char), strlen(DS_TAG_DEVICE_DRIVER_VERSION_END), profileFile); } break; default: status = DS_UNKNOWN_DEVICE_TYPE; break; }; fwrite(DS_TAG_SCORE, sizeof(char), strlen(DS_TAG_SCORE), profileFile); status = serializer(profile->devices + i, &serializedScore, &serializedScoreSize); if (status == DS_SUCCESS && serializedScore != nullptr && serializedScoreSize > 0) { fwrite(serializedScore, sizeof(char), serializedScoreSize, profileFile); free(serializedScore); } fwrite(DS_TAG_SCORE_END, sizeof(char), strlen(DS_TAG_SCORE_END), profileFile); fwrite(DS_TAG_DEVICE_END, sizeof(char), strlen(DS_TAG_DEVICE_END), profileFile); fwrite("\n", sizeof(char), 1, profileFile); } fclose(profileFile); } return status; } // substitute invalid characters in device name with _ static void legalizeFileName(char *fileName) { // printf("fileName: %s\n", fileName); const char *invalidChars = "/\?:*\"><| "; // space is valid but can cause headaches // for each invalid char for (unsigned i = 0; i < strlen(invalidChars); i++) { char invalidStr[4]; invalidStr[0] = invalidChars[i]; invalidStr[1] = '\0'; // printf("eliminating %s\n", invalidStr); // char *pos = strstr(fileName, invalidStr); // initial ./ is valid for present directory // if (*pos == '.') pos++; // if (*pos == '/') pos++; for (char *pos = strstr(fileName, invalidStr); pos != nullptr; pos = strstr(pos + 1, invalidStr)) { // printf("\tfound: %s, ", pos); pos[0] = '_'; // printf("fileName: %s\n", fileName); } } } static void populateGPUEnvFromDevice(GPUEnv *gpuInfo, cl_device_id device) { // printf("[DS] populateGPUEnvFromDevice\n"); size_t size; gpuInfo->mnIsUserCreated = 1; // device gpuInfo->mpDevID = device; gpuInfo->mpArryDevsID = new cl_device_id[1]; gpuInfo->mpArryDevsID[0] = gpuInfo->mpDevID; clStatus = clGetDeviceInfo(gpuInfo->mpDevID, CL_DEVICE_TYPE, sizeof(cl_device_type), &gpuInfo->mDevType, &size); CHECK_OPENCL(clStatus, "populateGPUEnv::getDeviceInfo(TYPE)"); // platform clStatus = clGetDeviceInfo(gpuInfo->mpDevID, CL_DEVICE_PLATFORM, sizeof(cl_platform_id), &gpuInfo->mpPlatformID, &size); CHECK_OPENCL(clStatus, "populateGPUEnv::getDeviceInfo(PLATFORM)"); // context cl_context_properties props[3]; props[0] = CL_CONTEXT_PLATFORM; props[1] = (cl_context_properties)gpuInfo->mpPlatformID; props[2] = 0; gpuInfo->mpContext = clCreateContext(props, 1, &gpuInfo->mpDevID, nullptr, nullptr, &clStatus); CHECK_OPENCL(clStatus, "populateGPUEnv::createContext"); // queue cl_command_queue_properties queueProperties = 0; gpuInfo->mpCmdQueue = clCreateCommandQueue( gpuInfo->mpContext, gpuInfo->mpDevID, queueProperties, &clStatus); CHECK_OPENCL(clStatus, "populateGPUEnv::createCommandQueue"); } int OpenclDevice::LoadOpencl() { #ifdef WIN32 HINSTANCE HOpenclDll = nullptr; void *OpenclDll = nullptr; // fprintf(stderr, " LoadOpenclDllxx... \n"); OpenclDll = static_cast(HOpenclDll); OpenclDll = LoadLibrary("openCL.dll"); if (!static_cast(OpenclDll)) { fprintf(stderr, "[OD] Load opencl.dll failed!\n"); FreeLibrary(static_cast(OpenclDll)); return 0; } fprintf(stderr, "[OD] Load opencl.dll successful!\n"); #endif return 1; } int OpenclDevice::SetKernelEnv( KernelEnv *envInfo ) { envInfo->mpkContext = gpuEnv.mpContext; envInfo->mpkCmdQueue = gpuEnv.mpCmdQueue; envInfo->mpkProgram = gpuEnv.mpArryPrograms[0]; return 1; } static cl_mem allocateZeroCopyBuffer(KernelEnv rEnv, l_uint32 *hostbuffer, size_t nElements, cl_mem_flags flags, cl_int *pStatus) { cl_mem membuffer = clCreateBuffer(rEnv.mpkContext, (cl_mem_flags)(flags), nElements * sizeof(l_uint32), hostbuffer, pStatus); return membuffer; } static Pix *mapOutputCLBuffer(KernelEnv rEnv, cl_mem clbuffer, Pix *pixd, Pix *pixs, int elements, cl_mem_flags flags, bool memcopy = false, bool sync = true) { PROCNAME("mapOutputCLBuffer"); if (!pixd) { if (memcopy) { if ((pixd = pixCreateTemplate(pixs)) == nullptr) tprintf("pixd not made\n"); } else { if ((pixd = pixCreateHeader(pixGetWidth(pixs), pixGetHeight(pixs), pixGetDepth(pixs))) == nullptr) tprintf("pixd not made\n"); } } l_uint32 *pValues = (l_uint32 *)clEnqueueMapBuffer( rEnv.mpkCmdQueue, clbuffer, CL_TRUE, flags, 0, elements * sizeof(l_uint32), 0, nullptr, nullptr, nullptr); if (memcopy) { memcpy(pixGetData(pixd), pValues, elements * sizeof(l_uint32)); } else { pixSetData(pixd, pValues); } clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, clbuffer, pValues, 0, nullptr, nullptr); if (sync) { clFinish(rEnv.mpkCmdQueue); } return pixd; } void OpenclDevice::releaseMorphCLBuffers() { if (pixdCLIntermediate != nullptr) clReleaseMemObject(pixdCLIntermediate); if (pixsCLBuffer != nullptr) clReleaseMemObject(pixsCLBuffer); if (pixdCLBuffer != nullptr) clReleaseMemObject(pixdCLBuffer); if (pixThBuffer != nullptr) clReleaseMemObject(pixThBuffer); pixdCLIntermediate = pixsCLBuffer = pixdCLBuffer = pixThBuffer = nullptr; } int OpenclDevice::initMorphCLAllocations(l_int32 wpl, l_int32 h, Pix *pixs) { SetKernelEnv(&rEnv); if (pixThBuffer != nullptr) { pixsCLBuffer = allocateZeroCopyBuffer(rEnv, nullptr, wpl * h, CL_MEM_ALLOC_HOST_PTR, &clStatus); // Get the output from ThresholdToPix operation clStatus = clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixThBuffer, pixsCLBuffer, 0, 0, sizeof(l_uint32) * wpl * h, 0, nullptr, nullptr); } else { // Get data from the source image l_uint32 *srcdata = reinterpret_cast(malloc(wpl * h * sizeof(l_uint32))); memcpy(srcdata, pixGetData(pixs), wpl * h * sizeof(l_uint32)); pixsCLBuffer = allocateZeroCopyBuffer(rEnv, srcdata, wpl * h, CL_MEM_USE_HOST_PTR, &clStatus); } pixdCLBuffer = allocateZeroCopyBuffer(rEnv, nullptr, wpl * h, CL_MEM_ALLOC_HOST_PTR, &clStatus); pixdCLIntermediate = allocateZeroCopyBuffer(rEnv, nullptr, wpl * h, CL_MEM_ALLOC_HOST_PTR, &clStatus); return (int)clStatus; } int OpenclDevice::InitEnv() { //PERF_COUNT_START("OD::InitEnv") // printf("[OD] OpenclDevice::InitEnv()\n"); #ifdef SAL_WIN32 while( 1 ) { if( 1 == LoadOpencl() ) break; } PERF_COUNT_SUB("LoadOpencl") #endif // sets up environment, compiles programs InitOpenclRunEnv_DeviceSelection( 0 ); //PERF_COUNT_SUB("called InitOpenclRunEnv_DS") //PERF_COUNT_END return 1; } int OpenclDevice::ReleaseOpenclRunEnv() { ReleaseOpenclEnv( &gpuEnv ); #ifdef SAL_WIN32 FreeOpenclDll(); #endif return 1; } inline int OpenclDevice::AddKernelConfig( int kCount, const char *kName ) { if ( kCount < 1 ) fprintf(stderr,"Error: ( KCount < 1 ) AddKernelConfig\n" ); strcpy( gpuEnv.mArrykernelNames[kCount-1], kName ); gpuEnv.mnKernelCount++; return 0; } int OpenclDevice::RegistOpenclKernel() { if ( !gpuEnv.mnIsUserCreated ) memset( &gpuEnv, 0, sizeof(gpuEnv) ); gpuEnv.mnFileCount = 0; //argc; gpuEnv.mnKernelCount = 0UL; AddKernelConfig( 1, (const char*) "oclAverageSub1" ); return 0; } int OpenclDevice::InitOpenclRunEnv_DeviceSelection( int argc ) { //PERF_COUNT_START("InitOpenclRunEnv_DS") if (!isInited) { // after programs compiled, selects best device ds_device bestDevice_DS = getDeviceSelection( ); //PERF_COUNT_SUB("called getDeviceSelection()") cl_device_id bestDevice = bestDevice_DS.oclDeviceID; // overwrite global static GPUEnv with new device if (selectedDeviceIsOpenCL() ) { //printf("[DS] InitOpenclRunEnv_DS::Calling populateGPUEnvFromDevice() for selected device\n"); populateGPUEnvFromDevice( &gpuEnv, bestDevice ); gpuEnv.mnFileCount = 0; //argc; gpuEnv.mnKernelCount = 0UL; //PERF_COUNT_SUB("populate gpuEnv") CompileKernelFile(&gpuEnv, ""); //PERF_COUNT_SUB("CompileKernelFile") } else { //printf("[DS] InitOpenclRunEnv_DS::Skipping populateGPUEnvFromDevice() b/c native cpu selected\n"); } isInited = 1; } //PERF_COUNT_END return 0; } OpenclDevice::OpenclDevice() { //InitEnv(); } OpenclDevice::~OpenclDevice() { //ReleaseOpenclRunEnv(); } int OpenclDevice::ReleaseOpenclEnv( GPUEnv *gpuInfo ) { int i = 0; int clStatus = 0; if ( !isInited ) { return 1; } for ( i = 0; i < gpuEnv.mnFileCount; i++ ) { if ( gpuEnv.mpArryPrograms[i] ) { clStatus = clReleaseProgram( gpuEnv.mpArryPrograms[i] ); CHECK_OPENCL( clStatus, "clReleaseProgram" ); gpuEnv.mpArryPrograms[i] = nullptr; } } if ( gpuEnv.mpCmdQueue ) { clReleaseCommandQueue( gpuEnv.mpCmdQueue ); gpuEnv.mpCmdQueue = nullptr; } if ( gpuEnv.mpContext ) { clReleaseContext( gpuEnv.mpContext ); gpuEnv.mpContext = nullptr; } isInited = 0; gpuInfo->mnIsUserCreated = 0; delete[] gpuInfo->mpArryDevsID; return 1; } int OpenclDevice::BinaryGenerated( const char * clFileName, FILE ** fhandle ) { unsigned int i = 0; cl_int clStatus; int status = 0; char *str = nullptr; FILE *fd = nullptr; char fileName[256] = {0}, cl_name[128] = {0}; char deviceName[1024]; clStatus = clGetDeviceInfo(gpuEnv.mpArryDevsID[i], CL_DEVICE_NAME, sizeof(deviceName), deviceName, nullptr); CHECK_OPENCL(clStatus, "clGetDeviceInfo"); str = (char *)strstr(clFileName, (char *)".cl"); memcpy(cl_name, clFileName, str - clFileName); cl_name[str - clFileName] = '\0'; sprintf(fileName, "%s-%s.bin", cl_name, deviceName); legalizeFileName(fileName); fd = fopen(fileName, "rb"); status = (fd != nullptr) ? 1 : 0; if (fd != nullptr) { *fhandle = fd; } return status; } int OpenclDevice::CachedOfKernerPrg( const GPUEnv *gpuEnvCached, const char * clFileName ) { int i; for ( i = 0; i < gpuEnvCached->mnFileCount; i++ ) { if ( strcasecmp( gpuEnvCached->mArryKnelSrcFile[i], clFileName ) == 0 ) { if (gpuEnvCached->mpArryPrograms[i] != nullptr) { return 1; } } } return 0; } int OpenclDevice::WriteBinaryToFile( const char* fileName, const char* birary, size_t numBytes ) { FILE *output = nullptr; output = fopen(fileName, "wb"); if (output == nullptr) { return 0; } fwrite( birary, sizeof(char), numBytes, output ); fclose( output ); return 1; } int OpenclDevice::GeneratBinFromKernelSource( cl_program program, const char * clFileName ) { unsigned int i = 0; cl_int clStatus; size_t *binarySizes; cl_uint numDevices; cl_device_id *mpArryDevsID; char **binaries, *str = nullptr; clStatus = clGetProgramInfo(program, CL_PROGRAM_NUM_DEVICES, sizeof(numDevices), &numDevices, nullptr); CHECK_OPENCL( clStatus, "clGetProgramInfo" ); mpArryDevsID = (cl_device_id*) malloc( sizeof(cl_device_id) * numDevices ); if (mpArryDevsID == nullptr) { return 0; } /* grab the handles to all of the devices in the program. */ clStatus = clGetProgramInfo(program, CL_PROGRAM_DEVICES, sizeof(cl_device_id) * numDevices, mpArryDevsID, nullptr); CHECK_OPENCL( clStatus, "clGetProgramInfo" ); /* figure out the sizes of each of the binaries. */ binarySizes = (size_t*) malloc( sizeof(size_t) * numDevices ); clStatus = clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t) * numDevices, binarySizes, nullptr); CHECK_OPENCL( clStatus, "clGetProgramInfo" ); /* copy over all of the generated binaries. */ binaries = (char**) malloc( sizeof(char *) * numDevices ); if (binaries == nullptr) { return 0; } for ( i = 0; i < numDevices; i++ ) { if ( binarySizes[i] != 0 ) { binaries[i] = (char*) malloc( sizeof(char) * binarySizes[i] ); if (binaries[i] == nullptr) { return 0; } } else { binaries[i] = nullptr; } } clStatus = clGetProgramInfo(program, CL_PROGRAM_BINARIES, sizeof(char *) * numDevices, binaries, nullptr); CHECK_OPENCL(clStatus,"clGetProgramInfo"); /* dump out each binary into its own separate file. */ for ( i = 0; i < numDevices; i++ ) { char fileName[256] = { 0 }, cl_name[128] = { 0 }; if ( binarySizes[i] != 0 ) { char deviceName[1024]; clStatus = clGetDeviceInfo(mpArryDevsID[i], CL_DEVICE_NAME, sizeof(deviceName), deviceName, nullptr); CHECK_OPENCL( clStatus, "clGetDeviceInfo" ); str = (char*) strstr( clFileName, (char*) ".cl" ); memcpy( cl_name, clFileName, str - clFileName ); cl_name[str - clFileName] = '\0'; sprintf( fileName, "%s-%s.bin", cl_name, deviceName ); legalizeFileName(fileName); if ( !WriteBinaryToFile( fileName, binaries[i], binarySizes[i] ) ) { printf("[OD] write binary[%s] failed\n", fileName); return 0; } //else printf("[OD] write binary[%s] successfully\n", fileName); } } // Release all resouces and memory for ( i = 0; i < numDevices; i++ ) { free(binaries[i]); binaries[i] = nullptr; } free(binaries); binaries = nullptr; free(binarySizes); binarySizes = nullptr; free(mpArryDevsID); mpArryDevsID = nullptr; return 1; } int OpenclDevice::CompileKernelFile( GPUEnv *gpuInfo, const char *buildOption ) { //PERF_COUNT_START("CompileKernelFile") cl_int clStatus = 0; size_t length; char *buildLog = nullptr, *binary; const char *source; size_t source_size[1]; int b_error, binary_status, binaryExisted, idx; cl_uint numDevices; cl_device_id *mpArryDevsID; FILE *fd, *fd1; const char* filename = "kernel.cl"; //fprintf(stderr, "[OD] CompileKernelFile ... \n"); if ( CachedOfKernerPrg(gpuInfo, filename) == 1 ) { return 1; } idx = gpuInfo->mnFileCount; source = kernel_src; source_size[0] = strlen( source ); binaryExisted = 0; binaryExisted = BinaryGenerated( filename, &fd ); // don't check for binary during microbenchmark //PERF_COUNT_SUB("BinaryGenerated") if ( binaryExisted == 1 ) { clStatus = clGetContextInfo(gpuInfo->mpContext, CL_CONTEXT_NUM_DEVICES, sizeof(numDevices), &numDevices, nullptr); CHECK_OPENCL(clStatus, "clGetContextInfo"); mpArryDevsID = (cl_device_id *)malloc(sizeof(cl_device_id) * numDevices); if (mpArryDevsID == nullptr) { return 0; } //PERF_COUNT_SUB("get numDevices") b_error = 0; length = 0; b_error |= fseek( fd, 0, SEEK_END ) < 0; b_error |= ( length = ftell(fd) ) <= 0; b_error |= fseek( fd, 0, SEEK_SET ) < 0; if ( b_error ) { return 0; } binary = (char*) malloc( length + 2 ); if ( !binary ) { return 0; } memset( binary, 0, length + 2 ); b_error |= fread( binary, 1, length, fd ) != length; fclose( fd ); //PERF_COUNT_SUB("read file") fd = nullptr; // grab the handles to all of the devices in the context. clStatus = clGetContextInfo(gpuInfo->mpContext, CL_CONTEXT_DEVICES, sizeof(cl_device_id) * numDevices, mpArryDevsID, nullptr); CHECK_OPENCL( clStatus, "clGetContextInfo" ); //PERF_COUNT_SUB("get devices") //fprintf(stderr, "[OD] Create kernel from binary\n"); gpuInfo->mpArryPrograms[idx] = clCreateProgramWithBinary( gpuInfo->mpContext,numDevices, mpArryDevsID, &length, (const unsigned char**) &binary, &binary_status, &clStatus ); CHECK_OPENCL( clStatus, "clCreateProgramWithBinary" ); //PERF_COUNT_SUB("clCreateProgramWithBinary") free( binary ); free( mpArryDevsID ); mpArryDevsID = nullptr; // PERF_COUNT_SUB("binaryExisted") } else { // create a CL program using the kernel source //fprintf(stderr, "[OD] Create kernel from source\n"); gpuInfo->mpArryPrograms[idx] = clCreateProgramWithSource( gpuInfo->mpContext, 1, &source, source_size, &clStatus); CHECK_OPENCL( clStatus, "clCreateProgramWithSource" ); //PERF_COUNT_SUB("!binaryExisted") } if (gpuInfo->mpArryPrograms[idx] == (cl_program) nullptr) { return 0; } //char options[512]; // create a cl program executable for all the devices specified //printf("[OD] BuildProgram.\n"); PERF_COUNT_START("OD::CompileKernel::clBuildProgram") if (!gpuInfo->mnIsUserCreated) { clStatus = clBuildProgram(gpuInfo->mpArryPrograms[idx], 1, gpuInfo->mpArryDevsID, buildOption, nullptr, nullptr); // PERF_COUNT_SUB("clBuildProgram notUserCreated") } else { clStatus = clBuildProgram(gpuInfo->mpArryPrograms[idx], 1, &(gpuInfo->mpDevID), buildOption, nullptr, nullptr); // PERF_COUNT_SUB("clBuildProgram isUserCreated") } PERF_COUNT_END if ( clStatus != CL_SUCCESS ) { printf ("BuildProgram error!\n"); if ( !gpuInfo->mnIsUserCreated ) { clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpArryDevsID[0], CL_PROGRAM_BUILD_LOG, 0, nullptr, &length); } else { clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpDevID, CL_PROGRAM_BUILD_LOG, 0, nullptr, &length); } if ( clStatus != CL_SUCCESS ) { printf("opencl create build log fail\n"); return 0; } buildLog = (char*) malloc( length ); if (buildLog == (char *)nullptr) { return 0; } if ( !gpuInfo->mnIsUserCreated ) { clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpArryDevsID[0], CL_PROGRAM_BUILD_LOG, length, buildLog, &length ); } else { clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpDevID, CL_PROGRAM_BUILD_LOG, length, buildLog, &length ); } if ( clStatus != CL_SUCCESS ) { printf("opencl program build info fail\n"); return 0; } fd1 = fopen( "kernel-build.log", "w+" ); if (fd1 != nullptr) { fwrite(buildLog, sizeof(char), length, fd1); fclose(fd1); } free( buildLog ); //PERF_COUNT_SUB("build error log") return 0; } strcpy( gpuInfo->mArryKnelSrcFile[idx], filename ); //PERF_COUNT_SUB("strcpy") if ( binaryExisted == 0 ) { GeneratBinFromKernelSource( gpuInfo->mpArryPrograms[idx], filename ); PERF_COUNT_SUB("GenerateBinFromKernelSource") } gpuInfo->mnFileCount += 1; //PERF_COUNT_END return 1; } l_uint32* OpenclDevice::pixReadFromTiffKernel(l_uint32 *tiffdata,l_int32 w,l_int32 h,l_int32 wpl,l_uint32 *line) { PERF_COUNT_START("pixReadFromTiffKernel") cl_int clStatus; KernelEnv rEnv; size_t globalThreads[2]; size_t localThreads[2]; int gsize; cl_mem valuesCl; cl_mem outputCl; //global and local work dimensions for Horizontal pass gsize = (w + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X; globalThreads[0] = gsize; gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y; globalThreads[1] = gsize; localThreads[0] = GROUPSIZE_X; localThreads[1] = GROUPSIZE_Y; SetKernelEnv( &rEnv ); l_uint32 *pResult = (l_uint32 *)malloc(w*h * sizeof(l_uint32)); rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "composeRGBPixel", &clStatus ); CHECK_OPENCL(clStatus, "clCreateKernel composeRGBPixel"); //Allocate input and output OCL buffers valuesCl = allocateZeroCopyBuffer(rEnv, tiffdata, w*h, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, &clStatus); outputCl = allocateZeroCopyBuffer(rEnv, pResult, w*h, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, &clStatus); //Kernel arguments clStatus = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &valuesCl); CHECK_OPENCL( clStatus, "clSetKernelArg"); clStatus = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(w), &w); CHECK_OPENCL( clStatus, "clSetKernelArg" ); clStatus = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(h), &h); CHECK_OPENCL( clStatus, "clSetKernelArg" ); clStatus = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl); CHECK_OPENCL( clStatus, "clSetKernelArg" ); clStatus = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(cl_mem), &outputCl); CHECK_OPENCL( clStatus, "clSetKernelArg"); //Kernel enqueue PERF_COUNT_SUB("before") clStatus = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); CHECK_OPENCL(clStatus, "clEnqueueNDRangeKernel"); /* map results back from gpu */ void *ptr = clEnqueueMapBuffer(rEnv.mpkCmdQueue, outputCl, CL_TRUE, CL_MAP_READ, 0, w * h * sizeof(l_uint32), 0, nullptr, nullptr, &clStatus); CHECK_OPENCL(clStatus, "clEnqueueMapBuffer outputCl"); clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, outputCl, ptr, 0, nullptr, nullptr); // Sync clFinish(rEnv.mpkCmdQueue); PERF_COUNT_SUB("kernel & map") PERF_COUNT_END return pResult; } //Morphology Dilate operation for 5x5 structuring element. Invokes the relevant OpenCL kernels static cl_int pixDilateCL_55(l_int32 wpl, l_int32 h) { size_t globalThreads[2]; cl_mem pixtemp; cl_int status; int gsize; size_t localThreads[2]; // Horizontal pass gsize = (wpl * h + GROUPSIZE_HMORX - 1) / GROUPSIZE_HMORX * GROUPSIZE_HMORX; globalThreads[0] = gsize; globalThreads[1] = GROUPSIZE_HMORY; localThreads[0] = GROUPSIZE_HMORX; localThreads[1] = GROUPSIZE_HMORY; rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoDilateHor_5x5", &status); CHECK_OPENCL(status, "clCreateKernel morphoDilateHor_5x5"); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); // Swap source and dest buffers pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; // Vertical gsize = (wpl + GROUPSIZE_X - 1) / GROUPSIZE_X * GROUPSIZE_X; globalThreads[0] = gsize; gsize = (h + GROUPSIZE_Y - 1) / GROUPSIZE_Y * GROUPSIZE_Y; globalThreads[1] = gsize; localThreads[0] = GROUPSIZE_X; localThreads[1] = GROUPSIZE_Y; rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoDilateVer_5x5", &status); CHECK_OPENCL(status, "clCreateKernel morphoDilateVer_5x5"); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); return status; } //Morphology Erode operation for 5x5 structuring element. Invokes the relevant OpenCL kernels static cl_int pixErodeCL_55(l_int32 wpl, l_int32 h) { size_t globalThreads[2]; cl_mem pixtemp; cl_int status; int gsize; l_uint32 fwmask, lwmask; size_t localThreads[2]; lwmask = lmask32[31 - 2]; fwmask = rmask32[31 - 2]; // Horizontal pass gsize = (wpl * h + GROUPSIZE_HMORX - 1) / GROUPSIZE_HMORX * GROUPSIZE_HMORX; globalThreads[0] = gsize; globalThreads[1] = GROUPSIZE_HMORY; localThreads[0] = GROUPSIZE_HMORX; localThreads[1] = GROUPSIZE_HMORY; rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoErodeHor_5x5", &status); CHECK_OPENCL(status, "clCreateKernel morphoErodeHor_5x5"); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); // Swap source and dest buffers pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; // Vertical gsize = (wpl + GROUPSIZE_X - 1) / GROUPSIZE_X * GROUPSIZE_X; globalThreads[0] = gsize; gsize = (h + GROUPSIZE_Y - 1) / GROUPSIZE_Y * GROUPSIZE_Y; globalThreads[1] = gsize; localThreads[0] = GROUPSIZE_X; localThreads[1] = GROUPSIZE_Y; rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoErodeVer_5x5", &status); CHECK_OPENCL(status, "clCreateKernel morphoErodeVer_5x5"); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h); status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(fwmask), &fwmask); status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(lwmask), &lwmask); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); return status; } //Morphology Dilate operation. Invokes the relevant OpenCL kernels static cl_int pixDilateCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h) { l_int32 xp, yp, xn, yn; SEL *sel; size_t globalThreads[2]; cl_mem pixtemp; cl_int status; int gsize; size_t localThreads[2]; char isEven; OpenclDevice::SetKernelEnv(&rEnv); if (hsize == 5 && vsize == 5) { // Specific case for 5x5 status = pixDilateCL_55(wpl, h); return status; } sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT); selFindMaxTranslations(sel, &xp, &yp, &xn, &yn); selDestroy(&sel); // global and local work dimensions for Horizontal pass gsize = (wpl + GROUPSIZE_X - 1) / GROUPSIZE_X * GROUPSIZE_X; globalThreads[0] = gsize; gsize = (h + GROUPSIZE_Y - 1) / GROUPSIZE_Y * GROUPSIZE_Y; globalThreads[1] = gsize; localThreads[0] = GROUPSIZE_X; localThreads[1] = GROUPSIZE_Y; if (xp > 31 || xn > 31) { // Generic case. rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoDilateHor", &status); CHECK_OPENCL(status, "clCreateKernel morphoDilateHor"); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(xn), &xn); status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(h), &h); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); if (yp > 0 || yn > 0) { pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; } } else if (xp > 0 || xn > 0) { // Specific Horizontal pass kernel for half width < 32 rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoDilateHor_32word", &status); CHECK_OPENCL(status, "clCreateKernel morphoDilateHor_32word"); isEven = (xp != xn); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h); status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(isEven), &isEven); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); if (yp > 0 || yn > 0) { pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; } } if (yp > 0 || yn > 0) { rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoDilateVer", &status); CHECK_OPENCL(status, "clCreateKernel morphoDilateVer"); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(yp), &yp); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h); status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(yn), &yn); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); } return status; } //Morphology Erode operation. Invokes the relevant OpenCL kernels static cl_int pixErodeCL(l_int32 hsize, l_int32 vsize, l_uint32 wpl, l_uint32 h) { l_int32 xp, yp, xn, yn; SEL *sel; size_t globalThreads[2]; size_t localThreads[2]; cl_mem pixtemp; cl_int status; int gsize; char isAsymmetric = (MORPH_BC == ASYMMETRIC_MORPH_BC); l_uint32 rwmask, lwmask; char isEven; sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT); selFindMaxTranslations(sel, &xp, &yp, &xn, &yn); selDestroy(&sel); OpenclDevice::SetKernelEnv(&rEnv); if (hsize == 5 && vsize == 5 && isAsymmetric) { // Specific kernel for 5x5 status = pixErodeCL_55(wpl, h); return status; } lwmask = lmask32[31 - (xn & 31)]; rwmask = rmask32[31 - (xp & 31)]; // global and local work dimensions for Horizontal pass gsize = (wpl + GROUPSIZE_X - 1) / GROUPSIZE_X * GROUPSIZE_X; globalThreads[0] = gsize; gsize = (h + GROUPSIZE_Y - 1) / GROUPSIZE_Y * GROUPSIZE_Y; globalThreads[1] = gsize; localThreads[0] = GROUPSIZE_X; localThreads[1] = GROUPSIZE_Y; // Horizontal Pass if (xp > 31 || xn > 31) { // Generic case. rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoErodeHor", &status); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(xn), &xn); status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(h), &h); status = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(isAsymmetric), &isAsymmetric); status = clSetKernelArg(rEnv.mpkKernel, 7, sizeof(rwmask), &rwmask); status = clSetKernelArg(rEnv.mpkKernel, 8, sizeof(lwmask), &lwmask); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); if (yp > 0 || yn > 0) { pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; } } else if (xp > 0 || xn > 0) { rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoErodeHor_32word", &status); isEven = (xp != xn); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h); status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(isAsymmetric), &isAsymmetric); status = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(rwmask), &rwmask); status = clSetKernelArg(rEnv.mpkKernel, 7, sizeof(lwmask), &lwmask); status = clSetKernelArg(rEnv.mpkKernel, 8, sizeof(isEven), &isEven); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); if (yp > 0 || yn > 0) { pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; } } // Vertical Pass if (yp > 0 || yn > 0) { rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoErodeVer", &status); CHECK_OPENCL(status, "clCreateKernel morphoErodeVer"); status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(yp), &yp); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h); status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(isAsymmetric), &isAsymmetric); status = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(yn), &yn); status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); } return status; } //Morphology Open operation. Invokes the relevant OpenCL kernels static cl_int pixOpenCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h) { cl_int status; cl_mem pixtemp; // Erode followed by Dilate status = pixErodeCL(hsize, vsize, wpl, h); pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; status = pixDilateCL(hsize, vsize, wpl, h); return status; } //Morphology Close operation. Invokes the relevant OpenCL kernels static cl_int pixCloseCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h) { cl_int status; cl_mem pixtemp; // Dilate followed by Erode status = pixDilateCL(hsize, vsize, wpl, h); pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; status = pixErodeCL(hsize, vsize, wpl, h); return status; } //output = buffer1 & ~(buffer2) static cl_int pixSubtractCL_work(l_uint32 wpl, l_uint32 h, cl_mem buffer1, cl_mem buffer2, cl_mem outBuffer = nullptr) { cl_int status; size_t globalThreads[2]; int gsize; size_t localThreads[] = {GROUPSIZE_X, GROUPSIZE_Y}; gsize = (wpl + GROUPSIZE_X - 1) / GROUPSIZE_X * GROUPSIZE_X; globalThreads[0] = gsize; gsize = (h + GROUPSIZE_Y - 1) / GROUPSIZE_Y * GROUPSIZE_Y; globalThreads[1] = gsize; if (outBuffer != nullptr) { rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "pixSubtract", &status); CHECK_OPENCL(status, "clCreateKernel pixSubtract"); } else { rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "pixSubtract_inplace", &status); CHECK_OPENCL(status, "clCreateKernel pixSubtract_inplace"); } // Enqueue a kernel run call. status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &buffer1); status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &buffer2); status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl); status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h); if (outBuffer != nullptr) { status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(cl_mem), &outBuffer); } status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, nullptr, globalThreads, localThreads, 0, nullptr, nullptr); return status; } // OpenCL implementation of Get Lines from pix function //Note: Assumes the source and dest opencl buffer are initialized. No check done void OpenclDevice::pixGetLinesCL(Pix *pixd, Pix *pixs, Pix **pix_vline, Pix **pix_hline, Pix **pixClosed, bool getpixClosed, l_int32 close_hsize, l_int32 close_vsize, l_int32 open_hsize, l_int32 open_vsize, l_int32 line_hsize, l_int32 line_vsize) { l_uint32 wpl, h; cl_mem pixtemp; wpl = pixGetWpl(pixs); h = pixGetHeight(pixs); // First step : Close Morph operation: Dilate followed by Erode clStatus = pixCloseCL(close_hsize, close_vsize, wpl, h); // Copy the Close output to CPU buffer if (getpixClosed) { *pixClosed = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pixClosed, pixs, wpl * h, CL_MAP_READ, true, false); } // Store the output of close operation in an intermediate buffer // this will be later used for pixsubtract clStatus = clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0, 0, sizeof(int) * wpl * h, 0, nullptr, nullptr); // Second step: Open Operation - Erode followed by Dilate pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; clStatus = pixOpenCL(open_hsize, open_vsize, wpl, h); // Third step: Subtract : (Close - Open) pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixdCLIntermediate; pixdCLIntermediate = pixtemp; clStatus = pixSubtractCL_work(wpl, h, pixdCLBuffer, pixsCLBuffer); // Store the output of Hollow operation in an intermediate buffer // this will be later used clStatus = clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0, 0, sizeof(int) * wpl * h, 0, nullptr, nullptr); pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLBuffer; pixdCLBuffer = pixtemp; // Fourth step: Get vertical line // pixOpenBrick(nullptr, pix_hollow, 1, min_line_length); clStatus = pixOpenCL(1, line_vsize, wpl, h); // Copy the vertical line output to CPU buffer *pix_vline = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pix_vline, pixs, wpl * h, CL_MAP_READ, true, false); pixtemp = pixsCLBuffer; pixsCLBuffer = pixdCLIntermediate; pixdCLIntermediate = pixtemp; // Fifth step: Get horizontal line // pixOpenBrick(nullptr, pix_hollow, min_line_length, 1); clStatus = pixOpenCL(line_hsize, 1, wpl, h); // Copy the horizontal line output to CPU buffer *pix_hline = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pix_hline, pixs, wpl * h, CL_MAP_READ, true, true); return; } /************************************************************************* * HistogramRect * Otsu Thresholding Operations * histogramAllChannels is laid out as all channel 0, then all channel 1... * only supports 1 or 4 channels (bytes_per_pixel) ************************************************************************/ int OpenclDevice::HistogramRectOCL(unsigned char *imageData, int bytes_per_pixel, int bytes_per_line, int left, // always 0 int top, // always 0 int width, int height, int kHistogramSize, int *histogramAllChannels) { PERF_COUNT_START("HistogramRectOCL") cl_int clStatus; int retVal = 0; KernelEnv histKern; SetKernelEnv(&histKern); KernelEnv histRedKern; SetKernelEnv(&histRedKern); /* map imagedata to device as read only */ // USE_HOST_PTR uses onion+ bus which is slowest option; also happens to be // coherent which we don't need. // faster option would be to allocate initial image buffer // using a garlic bus memory type cl_mem imageBuffer = clCreateBuffer( histKern.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, width * height * bytes_per_pixel * sizeof(char), imageData, &clStatus); CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer"); /* setup work group size parameters */ int block_size = 256; cl_uint numCUs; clStatus = clGetDeviceInfo(gpuEnv.mpDevID, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(numCUs), &numCUs, nullptr); CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer"); int requestedOccupancy = 10; int numWorkGroups = numCUs * requestedOccupancy; int numThreads = block_size * numWorkGroups; size_t local_work_size[] = {static_cast(block_size)}; size_t global_work_size[] = {static_cast(numThreads)}; size_t red_global_work_size[] = { static_cast(block_size * kHistogramSize * bytes_per_pixel)}; /* map histogramAllChannels as write only */ cl_mem histogramBuffer = clCreateBuffer( histKern.mpkContext, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, kHistogramSize * bytes_per_pixel * sizeof(int), histogramAllChannels, &clStatus); CHECK_OPENCL(clStatus, "clCreateBuffer histogramBuffer"); /* intermediate histogram buffer */ int histRed = 256; int tmpHistogramBins = kHistogramSize * bytes_per_pixel * histRed; cl_mem tmpHistogramBuffer = clCreateBuffer(histKern.mpkContext, CL_MEM_READ_WRITE, tmpHistogramBins * sizeof(cl_uint), nullptr, &clStatus); CHECK_OPENCL(clStatus, "clCreateBuffer tmpHistogramBuffer"); /* atomic sync buffer */ int *zeroBuffer = new int[1]; zeroBuffer[0] = 0; cl_mem atomicSyncBuffer = clCreateBuffer( histKern.mpkContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sizeof(cl_int), zeroBuffer, &clStatus); CHECK_OPENCL(clStatus, "clCreateBuffer atomicSyncBuffer"); delete[] zeroBuffer; // Create kernel objects based on bytes_per_pixel if (bytes_per_pixel == 1) { histKern.mpkKernel = clCreateKernel( histKern.mpkProgram, "kernel_HistogramRectOneChannel", &clStatus); CHECK_OPENCL(clStatus, "clCreateKernel kernel_HistogramRectOneChannel"); histRedKern.mpkKernel = clCreateKernel(histRedKern.mpkProgram, "kernel_HistogramRectOneChannelReduction", &clStatus); CHECK_OPENCL(clStatus, "clCreateKernel kernel_HistogramRectOneChannelReduction"); } else { histKern.mpkKernel = clCreateKernel( histKern.mpkProgram, "kernel_HistogramRectAllChannels", &clStatus ); CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectAllChannels"); histRedKern.mpkKernel = clCreateKernel( histRedKern.mpkProgram, "kernel_HistogramRectAllChannelsReduction", &clStatus ); CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectAllChannelsReduction"); } void *ptr; //Initialize tmpHistogramBuffer buffer ptr = clEnqueueMapBuffer( histKern.mpkCmdQueue, tmpHistogramBuffer, CL_TRUE, CL_MAP_WRITE, 0, tmpHistogramBins * sizeof(cl_uint), 0, nullptr, nullptr, &clStatus); CHECK_OPENCL( clStatus, "clEnqueueMapBuffer tmpHistogramBuffer"); memset(ptr, 0, tmpHistogramBins*sizeof(cl_uint)); clEnqueueUnmapMemObject(histKern.mpkCmdQueue, tmpHistogramBuffer, ptr, 0, nullptr, nullptr); /* set kernel 1 arguments */ clStatus = clSetKernelArg(histKern.mpkKernel, 0, sizeof(cl_mem), &imageBuffer); CHECK_OPENCL( clStatus, "clSetKernelArg imageBuffer"); cl_uint numPixels = width*height; clStatus = clSetKernelArg(histKern.mpkKernel, 1, sizeof(cl_uint), &numPixels); CHECK_OPENCL( clStatus, "clSetKernelArg numPixels" ); clStatus = clSetKernelArg(histKern.mpkKernel, 2, sizeof(cl_mem), &tmpHistogramBuffer); CHECK_OPENCL( clStatus, "clSetKernelArg tmpHistogramBuffer"); /* set kernel 2 arguments */ int n = numThreads/bytes_per_pixel; clStatus = clSetKernelArg(histRedKern.mpkKernel, 0, sizeof(cl_int), &n); CHECK_OPENCL( clStatus, "clSetKernelArg imageBuffer"); clStatus = clSetKernelArg(histRedKern.mpkKernel, 1, sizeof(cl_mem), &tmpHistogramBuffer); CHECK_OPENCL( clStatus, "clSetKernelArg tmpHistogramBuffer"); clStatus = clSetKernelArg(histRedKern.mpkKernel, 2, sizeof(cl_mem), &histogramBuffer); CHECK_OPENCL( clStatus, "clSetKernelArg histogramBuffer"); /* launch histogram */ PERF_COUNT_SUB("before") clStatus = clEnqueueNDRangeKernel(histKern.mpkCmdQueue, histKern.mpkKernel, 1, nullptr, global_work_size, local_work_size, 0, nullptr, nullptr); CHECK_OPENCL(clStatus, "clEnqueueNDRangeKernel kernel_HistogramRectAllChannels"); clFinish(histKern.mpkCmdQueue); if (clStatus != 0) { retVal = -1; } /* launch histogram */ clStatus = clEnqueueNDRangeKernel( histRedKern.mpkCmdQueue, histRedKern.mpkKernel, 1, nullptr, red_global_work_size, local_work_size, 0, nullptr, nullptr); CHECK_OPENCL( clStatus, "clEnqueueNDRangeKernel kernel_HistogramRectAllChannelsReduction" ); clFinish( histRedKern.mpkCmdQueue ); if (clStatus != 0) { retVal = -1; } PERF_COUNT_SUB("redKernel") /* map results back from gpu */ ptr = clEnqueueMapBuffer(histRedKern.mpkCmdQueue, histogramBuffer, CL_TRUE, CL_MAP_READ, 0, kHistogramSize * bytes_per_pixel * sizeof(int), 0, nullptr, nullptr, &clStatus); CHECK_OPENCL( clStatus, "clEnqueueMapBuffer histogramBuffer"); if (clStatus != 0) { retVal = -1; } clEnqueueUnmapMemObject(histRedKern.mpkCmdQueue, histogramBuffer, ptr, 0, nullptr, nullptr); clReleaseMemObject(histogramBuffer); clReleaseMemObject(imageBuffer); PERF_COUNT_SUB("after") PERF_COUNT_END return retVal; } /************************************************************************* * Threshold the rectangle, taking everything except the image buffer pointer * from the class, using thresholds/hi_values to the output IMAGE. * only supports 1 or 4 channels ************************************************************************/ int OpenclDevice::ThresholdRectToPixOCL(unsigned char *imageData, int bytes_per_pixel, int bytes_per_line, int *thresholds, int *hi_values, Pix **pix, int height, int width, int top, int left) { PERF_COUNT_START("ThresholdRectToPixOCL") int retVal = 0; /* create pix result buffer */ *pix = pixCreate(width, height, 1); uint32_t *pixData = pixGetData(*pix); int wpl = pixGetWpl(*pix); int pixSize = wpl * height * sizeof(uint32_t); // number of pixels cl_int clStatus; KernelEnv rEnv; SetKernelEnv(&rEnv); /* setup work group size parameters */ int block_size = 256; cl_uint numCUs = 6; clStatus = clGetDeviceInfo(gpuEnv.mpDevID, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(numCUs), &numCUs, nullptr); CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer"); int requestedOccupancy = 10; int numWorkGroups = numCUs * requestedOccupancy; int numThreads = block_size * numWorkGroups; size_t local_work_size[] = {(size_t)block_size}; size_t global_work_size[] = {(size_t)numThreads}; /* map imagedata to device as read only */ // USE_HOST_PTR uses onion+ bus which is slowest option; also happens to be // coherent which we don't need. // faster option would be to allocate initial image buffer // using a garlic bus memory type cl_mem imageBuffer = clCreateBuffer( rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, width * height * bytes_per_pixel * sizeof(char), imageData, &clStatus); CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer"); /* map pix as write only */ pixThBuffer = clCreateBuffer(rEnv.mpkContext, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR, pixSize, pixData, &clStatus); CHECK_OPENCL(clStatus, "clCreateBuffer pix"); /* map thresholds and hi_values */ cl_mem thresholdsBuffer = clCreateBuffer(rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, bytes_per_pixel * sizeof(int), thresholds, &clStatus); CHECK_OPENCL(clStatus, "clCreateBuffer thresholdBuffer"); cl_mem hiValuesBuffer = clCreateBuffer(rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, bytes_per_pixel * sizeof(int), hi_values, &clStatus); CHECK_OPENCL(clStatus, "clCreateBuffer hiValuesBuffer"); /* compile kernel */ if (bytes_per_pixel == 4) { rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "kernel_ThresholdRectToPix", &clStatus); CHECK_OPENCL(clStatus, "clCreateKernel kernel_ThresholdRectToPix"); } else { rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "kernel_ThresholdRectToPix_OneChan", &clStatus); CHECK_OPENCL(clStatus, "clCreateKernel kernel_ThresholdRectToPix_OneChan"); } /* set kernel arguments */ clStatus = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &imageBuffer); CHECK_OPENCL(clStatus, "clSetKernelArg imageBuffer"); clStatus = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(int), &height); CHECK_OPENCL(clStatus, "clSetKernelArg height"); clStatus = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(int), &width); CHECK_OPENCL(clStatus, "clSetKernelArg width"); clStatus = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(int), &wpl); CHECK_OPENCL(clStatus, "clSetKernelArg wpl"); clStatus = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(cl_mem), &thresholdsBuffer); CHECK_OPENCL(clStatus, "clSetKernelArg thresholdsBuffer"); clStatus = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(cl_mem), &hiValuesBuffer); CHECK_OPENCL(clStatus, "clSetKernelArg hiValuesBuffer"); clStatus = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(cl_mem), &pixThBuffer); CHECK_OPENCL(clStatus, "clSetKernelArg pixThBuffer"); /* launch kernel & wait */ PERF_COUNT_SUB("before") clStatus = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 1, nullptr, global_work_size, local_work_size, 0, nullptr, nullptr); CHECK_OPENCL(clStatus, "clEnqueueNDRangeKernel kernel_ThresholdRectToPix"); clFinish(rEnv.mpkCmdQueue); PERF_COUNT_SUB("kernel") if (clStatus != 0) { printf("Setting return value to -1\n"); retVal = -1; } /* map results back from gpu */ void *ptr = clEnqueueMapBuffer(rEnv.mpkCmdQueue, pixThBuffer, CL_TRUE, CL_MAP_READ, 0, pixSize, 0, nullptr, nullptr, &clStatus); CHECK_OPENCL(clStatus, "clEnqueueMapBuffer histogramBuffer"); clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, pixThBuffer, ptr, 0, nullptr, nullptr); clReleaseMemObject(imageBuffer); clReleaseMemObject(thresholdsBuffer); clReleaseMemObject(hiValuesBuffer); PERF_COUNT_SUB("after") PERF_COUNT_END return retVal; } /****************************************************************************** * Data Types for Device Selection *****************************************************************************/ typedef struct _TessScoreEvaluationInputData { int height; int width; int numChannels; unsigned char *imageData; Pix *pix; } TessScoreEvaluationInputData; static void populateTessScoreEvaluationInputData( TessScoreEvaluationInputData *input) { srand(1); // 8.5x11 inches @ 300dpi rounded to clean multiples int height = 3328; // %256 int width = 2560; // %512 int numChannels = 4; input->height = height; input->width = width; input->numChannels = numChannels; unsigned char(*imageData4)[4] = (unsigned char(*)[4])malloc( height * width * numChannels * sizeof(unsigned char)); // new unsigned char[4][height*width]; input->imageData = (unsigned char *)&imageData4[0]; // zero out image unsigned char pixelWhite[4] = {0, 0, 0, 255}; unsigned char pixelBlack[4] = {255, 255, 255, 255}; for (int p = 0; p < height * width; p++) { // unsigned char tmp[4] = imageData4[0]; imageData4[p][0] = pixelWhite[0]; imageData4[p][1] = pixelWhite[1]; imageData4[p][2] = pixelWhite[2]; imageData4[p][3] = pixelWhite[3]; } // random lines to be eliminated int maxLineWidth = 64; // pixels wide int numLines = 10; // vertical lines for (int i = 0; i < numLines; i++) { int lineWidth = rand() % maxLineWidth; int vertLinePos = lineWidth + rand() % (width - 2 * lineWidth); // printf("[PI] VerticalLine @ %i (w=%i)\n", vertLinePos, lineWidth); for (int row = vertLinePos - lineWidth / 2; row < vertLinePos + lineWidth / 2; row++) { for (int col = 0; col < height; col++) { // imageData4[row*width+col] = pixelBlack; imageData4[row * width + col][0] = pixelBlack[0]; imageData4[row * width + col][1] = pixelBlack[1]; imageData4[row * width + col][2] = pixelBlack[2]; imageData4[row * width + col][3] = pixelBlack[3]; } } } // horizontal lines for (int i = 0; i < numLines; i++) { int lineWidth = rand() % maxLineWidth; int horLinePos = lineWidth + rand() % (height - 2 * lineWidth); // printf("[PI] HorizontalLine @ %i (w=%i)\n", horLinePos, lineWidth); for (int row = 0; row < width; row++) { for (int col = horLinePos - lineWidth / 2; col < horLinePos + lineWidth / 2; col++) { // for (int row = vertLinePos-lineWidth/2; row < // vertLinePos+lineWidth/2; row++) { // printf("[PI] HoizLine pix @ (%3i, %3i)\n", row, col); // imageData4[row*width+col] = pixelBlack; imageData4[row * width + col][0] = pixelBlack[0]; imageData4[row * width + col][1] = pixelBlack[1]; imageData4[row * width + col][2] = pixelBlack[2]; imageData4[row * width + col][3] = pixelBlack[3]; } } } // spots (noise, squares) float fractionBlack = 0.1; // how much of the image should be blackened int numSpots = (height * width) * fractionBlack / (maxLineWidth * maxLineWidth / 2 / 2); for (int i = 0; i < numSpots; i++) { int lineWidth = rand() % maxLineWidth; int col = lineWidth + rand() % (width - 2 * lineWidth); int row = lineWidth + rand() % (height - 2 * lineWidth); // printf("[PI] Spot[%i/%i] @ (%3i, %3i)\n", i, numSpots, row, col ); for (int r = row - lineWidth / 2; r < row + lineWidth / 2; r++) { for (int c = col - lineWidth / 2; c < col + lineWidth / 2; c++) { // printf("[PI] \tSpot[%i/%i] @ (%3i, %3i)\n", i, numSpots, r, c ); // imageData4[row*width+col] = pixelBlack; imageData4[r * width + c][0] = pixelBlack[0]; imageData4[r * width + c][1] = pixelBlack[1]; imageData4[r * width + c][2] = pixelBlack[2]; imageData4[r * width + c][3] = pixelBlack[3]; } } } input->pix = pixCreate(input->width, input->height, 1); } typedef struct _TessDeviceScore { float time; // small time means faster device bool clError; // were there any opencl errors bool valid; // was the correct response generated } TessDeviceScore; /****************************************************************************** * Micro Benchmarks for Device Selection *****************************************************************************/ static double composeRGBPixelMicroBench(GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type) { double time = 0; #if ON_WINDOWS LARGE_INTEGER freq, time_funct_start, time_funct_end; QueryPerformanceFrequency(&freq); #elif ON_APPLE mach_timebase_info_data_t info = {0, 0}; mach_timebase_info(&info); long long start, stop; #else timespec time_funct_start, time_funct_end; #endif // input data l_uint32 *tiffdata = (l_uint32 *)input.imageData;// same size and random data; data doesn't change workload // function call if (type == DS_DEVICE_OPENCL_DEVICE) { #if ON_WINDOWS QueryPerformanceCounter(&time_funct_start); #elif ON_APPLE start = mach_absolute_time(); #else clock_gettime( CLOCK_MONOTONIC, &time_funct_start ); #endif OpenclDevice::gpuEnv = *env; int wpl = pixGetWpl(input.pix); OpenclDevice::pixReadFromTiffKernel(tiffdata, input.width, input.height, wpl, nullptr); #if ON_WINDOWS QueryPerformanceCounter(&time_funct_end); time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart); #elif ON_APPLE stop = mach_absolute_time(); time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9; #else clock_gettime( CLOCK_MONOTONIC, &time_funct_end ); time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0; #endif } else { #if ON_WINDOWS QueryPerformanceCounter(&time_funct_start); #elif ON_APPLE start = mach_absolute_time(); #else clock_gettime( CLOCK_MONOTONIC, &time_funct_start ); #endif Pix *pix = pixCreate(input.width, input.height, 32); l_uint32 *pixData = pixGetData(pix); int i, j; int idx = 0; for (i = 0; i < input.height ; i++) { for (j = 0; j < input.width; j++) { l_uint32 tiffword = tiffdata[i * input.width + j]; l_int32 rval = ((tiffword) & 0xff); l_int32 gval = (((tiffword) >> 8) & 0xff); l_int32 bval = (((tiffword) >> 16) & 0xff); l_uint32 value = (rval << 24) | (gval << 16) | (bval << 8); pixData[idx] = value; idx++; } } #if ON_WINDOWS QueryPerformanceCounter(&time_funct_end); time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart); #elif ON_APPLE stop = mach_absolute_time(); time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9; #else clock_gettime( CLOCK_MONOTONIC, &time_funct_end ); time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0; #endif pixDestroy(&pix); } // cleanup return time; } static double histogramRectMicroBench(GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type) { double time; #if ON_WINDOWS LARGE_INTEGER freq, time_funct_start, time_funct_end; QueryPerformanceFrequency(&freq); #elif ON_APPLE mach_timebase_info_data_t info = {0, 0}; mach_timebase_info(&info); long long start, stop; #else timespec time_funct_start, time_funct_end; #endif int left = 0; int top = 0; int kHistogramSize = 256; int bytes_per_line = input.width*input.numChannels; int *histogramAllChannels = new int[kHistogramSize*input.numChannels]; // function call if (type == DS_DEVICE_OPENCL_DEVICE) { #if ON_WINDOWS QueryPerformanceCounter(&time_funct_start); #elif ON_APPLE start = mach_absolute_time(); #else clock_gettime( CLOCK_MONOTONIC, &time_funct_start ); #endif OpenclDevice::gpuEnv = *env; int retVal = OpenclDevice::HistogramRectOCL( input.imageData, input.numChannels, bytes_per_line, top, left, input.width, input.height, kHistogramSize, histogramAllChannels); #if ON_WINDOWS QueryPerformanceCounter(&time_funct_end); time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart); #elif ON_APPLE stop = mach_absolute_time(); if (retVal == 0) { time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9; } else { time = FLT_MAX; } #else clock_gettime( CLOCK_MONOTONIC, &time_funct_end ); time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0; #endif } else { int *histogram = new int[kHistogramSize]; #if ON_WINDOWS QueryPerformanceCounter(&time_funct_start); #elif ON_APPLE start = mach_absolute_time(); #else clock_gettime( CLOCK_MONOTONIC, &time_funct_start ); #endif for (int ch = 0; ch < input.numChannels; ++ch) { tesseract::HistogramRect(input.pix, input.numChannels, left, top, input.width, input.height, histogram); } #if ON_WINDOWS QueryPerformanceCounter(&time_funct_end); time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart); #elif ON_APPLE stop = mach_absolute_time(); time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9; #else clock_gettime( CLOCK_MONOTONIC, &time_funct_end ); time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0; #endif delete[] histogram; } // cleanup delete[] histogramAllChannels; return time; } //Reproducing the ThresholdRectToPix native version static void ThresholdRectToPix_Native(const unsigned char *imagedata, int bytes_per_pixel, int bytes_per_line, const int *thresholds, const int *hi_values, Pix **pix) { int top = 0; int left = 0; int width = pixGetWidth(*pix); int height = pixGetHeight(*pix); *pix = pixCreate(width, height, 1); uint32_t *pixdata = pixGetData(*pix); int wpl = pixGetWpl(*pix); const unsigned char* srcdata = imagedata + top * bytes_per_line + left * bytes_per_pixel; for (int y = 0; y < height; ++y) { const uint8_t *linedata = srcdata; uint32_t *pixline = pixdata + y * wpl; for (int x = 0; x < width; ++x, linedata += bytes_per_pixel) { bool white_result = true; for (int ch = 0; ch < bytes_per_pixel; ++ch) { if (hi_values[ch] >= 0 && (linedata[ch] > thresholds[ch]) == (hi_values[ch] == 0)) { white_result = false; break; } } if (white_result) CLEAR_DATA_BIT(pixline, x); else SET_DATA_BIT(pixline, x); } srcdata += bytes_per_line; } } static double thresholdRectToPixMicroBench(GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type) { double time; #if ON_WINDOWS LARGE_INTEGER freq, time_funct_start, time_funct_end; QueryPerformanceFrequency(&freq); #elif ON_APPLE mach_timebase_info_data_t info = {0, 0}; mach_timebase_info(&info); long long start, stop; #else timespec time_funct_start, time_funct_end; #endif // input data unsigned char pixelHi = (unsigned char)255; int* thresholds = new int[4]; thresholds[0] = pixelHi/2; thresholds[1] = pixelHi/2; thresholds[2] = pixelHi/2; thresholds[3] = pixelHi/2; int *hi_values = new int[4]; thresholds[0] = pixelHi; thresholds[1] = pixelHi; thresholds[2] = pixelHi; thresholds[3] = pixelHi; //Pix* pix = pixCreate(width, height, 1); int top = 0; int left = 0; int bytes_per_line = input.width*input.numChannels; // function call if (type == DS_DEVICE_OPENCL_DEVICE) { #if ON_WINDOWS QueryPerformanceCounter(&time_funct_start); #elif ON_APPLE start = mach_absolute_time(); #else clock_gettime( CLOCK_MONOTONIC, &time_funct_start ); #endif OpenclDevice::gpuEnv = *env; int retVal = OpenclDevice::ThresholdRectToPixOCL( input.imageData, input.numChannels, bytes_per_line, thresholds, hi_values, &input.pix, input.height, input.width, top, left); #if ON_WINDOWS QueryPerformanceCounter(&time_funct_end); time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart); #elif ON_APPLE stop = mach_absolute_time(); if (retVal == 0) { time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9; ; } else { time = FLT_MAX; } #else clock_gettime( CLOCK_MONOTONIC, &time_funct_end ); time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0; #endif } else { tesseract::ImageThresholder thresholder; thresholder.SetImage( input.pix ); #if ON_WINDOWS QueryPerformanceCounter(&time_funct_start); #elif ON_APPLE start = mach_absolute_time(); #else clock_gettime( CLOCK_MONOTONIC, &time_funct_start ); #endif ThresholdRectToPix_Native( input.imageData, input.numChannels, bytes_per_line, thresholds, hi_values, &input.pix ); #if ON_WINDOWS QueryPerformanceCounter(&time_funct_end); time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart); #elif ON_APPLE stop = mach_absolute_time(); time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9; #else clock_gettime( CLOCK_MONOTONIC, &time_funct_end ); time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0; #endif } // cleanup delete[] thresholds; delete[] hi_values; return time; } static double getLineMasksMorphMicroBench(GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type) { double time = 0; #if ON_WINDOWS LARGE_INTEGER freq, time_funct_start, time_funct_end; QueryPerformanceFrequency(&freq); #elif ON_APPLE mach_timebase_info_data_t info = {0, 0}; mach_timebase_info(&info); long long start, stop; #else timespec time_funct_start, time_funct_end; #endif // input data int resolution = 300; int wpl = pixGetWpl(input.pix); int kThinLineFraction = 20; // tess constant int kMinLineLengthFraction = 4; // tess constant int max_line_width = resolution / kThinLineFraction; int min_line_length = resolution / kMinLineLengthFraction; int closing_brick = max_line_width / 3; // function call if (type == DS_DEVICE_OPENCL_DEVICE) { #if ON_WINDOWS QueryPerformanceCounter(&time_funct_start); #elif ON_APPLE start = mach_absolute_time(); #else clock_gettime( CLOCK_MONOTONIC, &time_funct_start ); #endif OpenclDevice::gpuEnv = *env; OpenclDevice::initMorphCLAllocations(wpl, input.height, input.pix); Pix *pix_vline = nullptr, *pix_hline = nullptr, *pix_closed = nullptr; OpenclDevice::pixGetLinesCL( nullptr, input.pix, &pix_vline, &pix_hline, &pix_closed, true, closing_brick, closing_brick, max_line_width, max_line_width, min_line_length, min_line_length); OpenclDevice::releaseMorphCLBuffers(); #if ON_WINDOWS QueryPerformanceCounter(&time_funct_end); time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart); #elif ON_APPLE stop = mach_absolute_time(); time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9; #else clock_gettime( CLOCK_MONOTONIC, &time_funct_end ); time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0; #endif } else { #if ON_WINDOWS QueryPerformanceCounter(&time_funct_start); #elif ON_APPLE start = mach_absolute_time(); #else clock_gettime( CLOCK_MONOTONIC, &time_funct_start ); #endif // native serial code Pix *src_pix = input.pix; Pix *pix_closed = pixCloseBrick(nullptr, src_pix, closing_brick, closing_brick); Pix *pix_solid = pixOpenBrick(nullptr, pix_closed, max_line_width, max_line_width); Pix *pix_hollow = pixSubtract(nullptr, pix_closed, pix_solid); pixDestroy(&pix_solid); Pix *pix_vline = pixOpenBrick(nullptr, pix_hollow, 1, min_line_length); Pix *pix_hline = pixOpenBrick(nullptr, pix_hollow, min_line_length, 1); pixDestroy(&pix_hollow); #if ON_WINDOWS QueryPerformanceCounter(&time_funct_end); time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart); #elif ON_APPLE stop = mach_absolute_time(); time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9; #else clock_gettime( CLOCK_MONOTONIC, &time_funct_end ); time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0; #endif } return time; } /****************************************************************************** * Device Selection *****************************************************************************/ #include "stdlib.h" // encode score object as byte string static ds_status serializeScore(ds_device *device, void **serializedScore, unsigned int *serializedScoreSize) { *serializedScoreSize = sizeof(TessDeviceScore); *serializedScore = new unsigned char[*serializedScoreSize]; memcpy(*serializedScore, device->score, *serializedScoreSize); return DS_SUCCESS; } // parses byte string and stores in score object static ds_status deserializeScore(ds_device *device, const unsigned char *serializedScore, unsigned int serializedScoreSize) { // check that serializedScoreSize == sizeof(TessDeviceScore); device->score = new TessDeviceScore; memcpy(device->score, serializedScore, serializedScoreSize); return DS_SUCCESS; } static ds_status releaseScore(void *score) { delete (TessDeviceScore *)score; return DS_SUCCESS; } // evaluate devices static ds_status evaluateScoreForDevice(ds_device *device, void *inputData) { // overwrite statuc gpuEnv w/ current device // so native opencl calls can be used; they use static gpuEnv printf("\n[DS] Device: \"%s\" (%s) evaluation...\n", device->oclDeviceName, device->type == DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native"); GPUEnv *env = nullptr; if (device->type == DS_DEVICE_OPENCL_DEVICE) { env = new GPUEnv; // printf("[DS] populating tmp GPUEnv from device\n"); populateGPUEnvFromDevice(env, device->oclDeviceID); env->mnFileCount = 0; // argc; env->mnKernelCount = 0UL; // printf("[DS] compiling kernels for tmp GPUEnv\n"); OpenclDevice::gpuEnv = *env; OpenclDevice::CompileKernelFile(env, ""); } TessScoreEvaluationInputData *input = static_cast(inputData); // pixReadTiff double composeRGBPixelTime = composeRGBPixelMicroBench(env, *input, device->type); // HistogramRect double histogramRectTime = histogramRectMicroBench(env, *input, device->type); // ThresholdRectToPix double thresholdRectToPixTime = thresholdRectToPixMicroBench(env, *input, device->type); // getLineMasks double getLineMasksMorphTime = getLineMasksMorphMicroBench(env, *input, device->type); // weigh times (% of cpu time) // these weights should be the % execution time that the native cpu code took float composeRGBPixelWeight = 1.2f; float histogramRectWeight = 2.4f; float thresholdRectToPixWeight = 4.5f; float getLineMasksMorphWeight = 5.0f; float weightedTime = composeRGBPixelWeight * composeRGBPixelTime + histogramRectWeight * histogramRectTime + thresholdRectToPixWeight * thresholdRectToPixTime + getLineMasksMorphWeight * getLineMasksMorphTime; device->score = new TessDeviceScore; ((TessDeviceScore *)device->score)->time = weightedTime; printf("[DS] Device: \"%s\" (%s) evaluated\n", device->oclDeviceName, device->type == DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native"); printf("[DS]%25s: %f (w=%.1f)\n", "composeRGBPixel", composeRGBPixelTime, composeRGBPixelWeight); printf("[DS]%25s: %f (w=%.1f)\n", "HistogramRect", histogramRectTime, histogramRectWeight); printf("[DS]%25s: %f (w=%.1f)\n", "ThresholdRectToPix", thresholdRectToPixTime, thresholdRectToPixWeight); printf("[DS]%25s: %f (w=%.1f)\n", "getLineMasksMorph", getLineMasksMorphTime, getLineMasksMorphWeight); printf("[DS]%25s: %f\n", "Score", static_cast(device->score)->time); return DS_SUCCESS; } // initial call to select device ds_device OpenclDevice::getDeviceSelection( ) { if (!deviceIsSelected) { PERF_COUNT_START("getDeviceSelection") // check if opencl is available at runtime if (1 == LoadOpencl()) { // opencl is available // PERF_COUNT_SUB("LoadOpencl") // setup devices ds_status status; ds_profile *profile; status = initDSProfile(&profile, "v0.1"); PERF_COUNT_SUB("initDSProfile") // try reading scores from file const char *fileName = "tesseract_opencl_profile_devices.dat"; status = readProfileFromFile(profile, deserializeScore, fileName); if (status != DS_SUCCESS) { // need to run evaluation printf("[DS] Profile file not available (%s); performing profiling.\n", fileName); // create input data TessScoreEvaluationInputData input; populateTessScoreEvaluationInputData(&input); // PERF_COUNT_SUB("populateTessScoreEvaluationInputData") // perform evaluations unsigned int numUpdates; status = profileDevices(profile, DS_EVALUATE_ALL, evaluateScoreForDevice, &input, &numUpdates); PERF_COUNT_SUB("profileDevices") // write scores to file if (status == DS_SUCCESS) { status = writeProfileToFile(profile, serializeScore, fileName); PERF_COUNT_SUB("writeProfileToFile") if (status == DS_SUCCESS) { printf("[DS] Scores written to file (%s).\n", fileName); } else { printf( "[DS] Error saving scores to file (%s); scores not written to " "file.\n", fileName); } } else { printf( "[DS] Unable to evaluate performance; scores not written to " "file.\n"); } } else { PERF_COUNT_SUB("readProfileFromFile") printf("[DS] Profile read from file (%s).\n", fileName); } // we now have device scores either from file or evaluation // select fastest using custom Tesseract selection algorithm float bestTime = FLT_MAX; // begin search with worst possible time int bestDeviceIdx = -1; for (unsigned d = 0; d < profile->numDevices; d++) { ds_device device = profile->devices[d]; TessDeviceScore score = *(TessDeviceScore *)device.score; float time = score.time; printf("[DS] Device[%u] %i:%s score is %f\n", d + 1, device.type, device.oclDeviceName, time); if (time < bestTime) { bestTime = time; bestDeviceIdx = d; } } printf("[DS] Selected Device[%i]: \"%s\" (%s)\n", bestDeviceIdx + 1, profile->devices[bestDeviceIdx].oclDeviceName, profile->devices[bestDeviceIdx].type == DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native"); // cleanup // TODO: call destructor for profile object? bool overridden = false; char *overrideDeviceStr = getenv("TESSERACT_OPENCL_DEVICE"); if (overrideDeviceStr != nullptr) { int overrideDeviceIdx = atoi(overrideDeviceStr); if (overrideDeviceIdx > 0 && overrideDeviceIdx <= profile->numDevices) { printf( "[DS] Overriding Device Selection (TESSERACT_OPENCL_DEVICE=%s, " "%i)\n", overrideDeviceStr, overrideDeviceIdx); bestDeviceIdx = overrideDeviceIdx - 1; overridden = true; } else { printf( "[DS] Ignoring invalid TESSERACT_OPENCL_DEVICE=%s ([1,%i] are " "valid devices).\n", overrideDeviceStr, profile->numDevices); } } if (overridden) { printf("[DS] Overridden Device[%i]: \"%s\" (%s)\n", bestDeviceIdx + 1, profile->devices[bestDeviceIdx].oclDeviceName, profile->devices[bestDeviceIdx].type == DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native"); } selectedDevice = profile->devices[bestDeviceIdx]; // cleanup releaseDSProfile(profile, releaseScore); } else { // opencl isn't available at runtime, select native cpu device printf("[DS] OpenCL runtime not available.\n"); selectedDevice.type = DS_DEVICE_NATIVE_CPU; selectedDevice.oclDeviceName = "(null)"; selectedDevice.score = nullptr; selectedDevice.oclDeviceID = nullptr; selectedDevice.oclDriverVersion = nullptr; } deviceIsSelected = true; PERF_COUNT_SUB("select from Profile") PERF_COUNT_END } // PERF_COUNT_END return selectedDevice; } bool OpenclDevice::selectedDeviceIsOpenCL() { ds_device device = getDeviceSelection(); return (device.type == DS_DEVICE_OPENCL_DEVICE); } #endif