/////////////////////////////////////////////////////////////////////// // File: lstmeval.cpp // Description: Evaluation program for LSTM-based networks. // Author: Ray Smith // Created: Wed Nov 23 12:20:06 PST 2016 // // (C) Copyright 2016, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #ifdef GOOGLE_TESSERACT #include "base/commandlineflags.h" #endif #include "commontraining.h" #include "genericvector.h" #include "lstmtester.h" #include "strngs.h" #include "tprintf.h" STRING_PARAM_FLAG(model, "", "Name of model file (training or recognition)"); STRING_PARAM_FLAG(traineddata, "", "If model is a training checkpoint, then traineddata must " "be the traineddata file that was given to the trainer"); STRING_PARAM_FLAG(eval_listfile, "", "File listing sample files in lstmf training format."); INT_PARAM_FLAG(max_image_MB, 2000, "Max memory to use for images."); INT_PARAM_FLAG(verbosity, 1, "Amount of diagnosting information to output (0-2)."); int main(int argc, char **argv) { tesseract::CheckSharedLibraryVersion(); ParseArguments(&argc, &argv); if (FLAGS_model.empty()) { tprintf("Must provide a --model!\n"); return 1; } if (FLAGS_eval_listfile.empty()) { tprintf("Must provide a --eval_listfile!\n"); return 1; } tesseract::TessdataManager mgr; if (!mgr.Init(FLAGS_model.c_str())) { if (FLAGS_traineddata.empty()) { tprintf("Must supply --traineddata to eval a training checkpoint!\n"); return 1; } tprintf("%s is not a recognition model, trying training checkpoint...\n", FLAGS_model.c_str()); if (!mgr.Init(FLAGS_traineddata.c_str())) { tprintf("Failed to load language model from %s!\n", FLAGS_traineddata.c_str()); return 1; } GenericVector model_data; if (!tesseract::LoadDataFromFile(FLAGS_model.c_str(), &model_data)) { tprintf("Failed to load model from: %s\n", FLAGS_model.c_str()); return 1; } mgr.OverwriteEntry(tesseract::TESSDATA_LSTM, &model_data[0], model_data.size()); } tesseract::LSTMTester tester(static_cast(FLAGS_max_image_MB) * 1048576); if (!tester.LoadAllEvalData(FLAGS_eval_listfile.c_str())) { tprintf("Failed to load eval data from: %s\n", FLAGS_eval_listfile.c_str()); return 1; } double errs = 0.0; STRING result = tester.RunEvalSync(0, &errs, mgr, /*training_stage (irrelevant)*/ 0, FLAGS_verbosity); tprintf("%s\n", result.string()); return 0; } /* main */