/////////////////////////////////////////////////////////////////////// // File: tfnetwork.h // Description: Encapsulation of an entire tensorflow graph as a // Tesseract Network. // Author: Ray Smith // Created: Fri Feb 26 09:35:29 PST 2016 // // (C) Copyright 2016, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #ifdef INCLUDE_TENSORFLOW #include "tfnetwork.h" #include "allheaders.h" #include "input.h" #include "networkscratch.h" using tensorflow::Status; using tensorflow::Tensor; using tensorflow::TensorShape; namespace tesseract { TFNetwork::TFNetwork(const STRING& name) : Network(NT_TENSORFLOW, name, 0, 0) {} TFNetwork::~TFNetwork() {} int TFNetwork::InitFromProtoStr(const string& proto_str) { if (!model_proto_.ParseFromString(proto_str)) return 0; return InitFromProto(); } // Writes to the given file. Returns false in case of error. // Should be overridden by subclasses, but called by their Serialize. bool TFNetwork::Serialize(TFile* fp) const { if (!Network::Serialize(fp)) return false; string proto_str; model_proto_.SerializeToString(&proto_str); GenericVector data; data.init_to_size(proto_str.size(), 0); memcpy(&data[0], proto_str.data(), proto_str.size()); if (!data.Serialize(fp)) return false; return true; } // Reads from the given file. Returns false in case of error. // Should be overridden by subclasses, but NOT called by their DeSerialize. bool TFNetwork::DeSerialize(TFile* fp) { GenericVector data; if (!data.DeSerialize(fp)) return false; if (!model_proto_.ParseFromArray(&data[0], data.size())) { return false; } return InitFromProto(); } // Runs forward propagation of activations on the input line. // See Network for a detailed discussion of the arguments. void TFNetwork::Forward(bool debug, const NetworkIO& input, const TransposedArray* input_transpose, NetworkScratch* scratch, NetworkIO* output) { std::vector> tf_inputs; int depth = input_shape_.depth(); ASSERT_HOST(depth == input.NumFeatures()); // TODO(rays) Allow batching. For now batch_size = 1. const StrideMap& stride_map = input.stride_map(); // TF requires a tensor of shape float[batch, height, width, depth]. TensorShape shape{1, stride_map.Size(FD_HEIGHT), stride_map.Size(FD_WIDTH), depth}; Tensor input_tensor(tensorflow::DT_FLOAT, shape); // The flat() member gives a 1d array, with a data() member to get the data. auto eigen_tensor = input_tensor.flat(); memcpy(eigen_tensor.data(), input.f(0), input.Width() * depth * sizeof(input.f(0)[0])); // Add the tensor to the vector of inputs. tf_inputs.emplace_back(model_proto_.image_input(), input_tensor); // Provide tensors giving the width and/or height of the image if they are // required. Some tf ops require a separate tensor with knowledge of the // size of the input as they cannot obtain it from the input tensor. This is // usually true in the case of ops that process a batch of variable-sized // objects. if (!model_proto_.image_widths().empty()) { TensorShape size_shape{1}; Tensor width_tensor(tensorflow::DT_INT64, size_shape); auto eigen_wtensor = width_tensor.flat(); *eigen_wtensor.data() = stride_map.Size(FD_WIDTH); tf_inputs.emplace_back(model_proto_.image_widths(), width_tensor); } if (!model_proto_.image_heights().empty()) { TensorShape size_shape{1}; Tensor height_tensor(tensorflow::DT_INT64, size_shape); auto eigen_htensor = height_tensor.flat(); *eigen_htensor.data() = stride_map.Size(FD_HEIGHT); tf_inputs.emplace_back(model_proto_.image_heights(), height_tensor); } std::vector target_layers = {model_proto_.output_layer()}; std::vector outputs; Status s = session_->Run(tf_inputs, target_layers, {}, &outputs); if (!s.ok()) tprintf("session->Run failed:%s\n", s.error_message().c_str()); ASSERT_HOST(s.ok()); ASSERT_HOST(outputs.size() == 1); const Tensor& output_tensor = outputs[0]; // Check the dimensions of the output. ASSERT_HOST(output_tensor.shape().dims() == 3); int output_batch = output_tensor.shape().dim_size(0); int output_steps = output_tensor.shape().dim_size(1); int output_depth = output_tensor.shape().dim_size(2); ASSERT_HOST(output_batch == 1); ASSERT_HOST(output_depth == output_shape_.depth()); output->Resize2d(false, output_steps, output_depth); auto eigen_output = output_tensor.flat(); memcpy(output->f(0), eigen_output.data(), output_steps * output_depth * sizeof(output->f(0)[0])); } int TFNetwork::InitFromProto() { spec_ = model_proto_.spec(); input_shape_.SetShape( model_proto_.batch_size(), std::max(0, model_proto_.y_size()), std::max(0, model_proto_.x_size()), model_proto_.depth()); output_shape_.SetShape(model_proto_.batch_size(), 1, 0, model_proto_.num_classes()); output_shape_.set_loss_type(model_proto_.using_ctc() ? LT_CTC : LT_SOFTMAX); ni_ = input_shape_.height(); no_ = output_shape_.depth(); // Initialize the session_ with the graph. Since we can't get the graph // back from the session_, we have to keep the proto as well tensorflow::SessionOptions options; session_.reset(NewSession(options)); Status s = session_->Create(model_proto_.graph()); if (s.ok()) return model_proto_.global_step(); tprintf("Session_->Create returned '%s'\n", s.error_message().c_str()); return 0; } } // namespace tesseract #endif // ifdef INCLUDE_TENSORFLOW