// (C) Copyright 2017, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifdef INCLUDE_TENSORFLOW # include // for xla::Array2D #else # include // std::array #endif #include "include_gunit.h" #include "stridemap.h" namespace tesseract { #if !defined(INCLUDE_TENSORFLOW) && 0 namespace xla { template class Array2D : public std::vector { public: Array2D() : std::vector(std::vector{0, 0}) {} Array2D(const int64_t n1, const int64_t n2) : std::vector(std::vector{n1, n2}) {} Array2D(const int64_t n1, const int64_t n2, const T value) : std::vector({n1, n2}, value) {} }; } // namespace xla #endif class StridemapTest : public ::testing::Test { protected: void SetUp() override { std::locale::global(std::locale("")); } #ifdef INCLUDE_TENSORFLOW // Sets up an Array2d object of the given size, initialized to increasing // values starting with start. std::unique_ptr> SetupArray(int ysize, int xsize, int start) { std::unique_ptr> a(new xla::Array2D(ysize, xsize)); int value = start; for (int y = 0; y < ysize; ++y) { for (int x = 0; x < xsize; ++x) { # ifdef INCLUDE_TENSORFLOW (*a)(y, x) = value++; # else a[y][x] = value++; # endif } } return a; } #endif }; TEST_F(StridemapTest, Indexing) { // This test verifies that with a batch of arrays of different sizes, the // iteration index each of them in turn, without going out of bounds. #ifdef INCLUDE_TENSORFLOW std::vector>> arrays; arrays.push_back(SetupArray(3, 4, 0)); arrays.push_back(SetupArray(4, 5, 12)); arrays.push_back(SetupArray(4, 4, 32)); arrays.push_back(SetupArray(3, 5, 48)); std::vector> h_w_sizes; for (size_t i = 0; i < arrays.size(); ++i) { h_w_sizes.emplace_back(arrays[i].get()->height(), arrays[i].get()->width()); } StrideMap stride_map; stride_map.SetStride(h_w_sizes); StrideMap::Index index(stride_map); int pos = 0; do { EXPECT_GE(index.t(), pos); EXPECT_EQ((*arrays.at(index.index(FD_BATCH)))(index.index(FD_HEIGHT), index.index(FD_WIDTH)), pos); EXPECT_EQ(index.IsLast(FD_BATCH), index.index(FD_BATCH) == arrays.size() - 1); EXPECT_EQ(index.IsLast(FD_HEIGHT), index.index(FD_HEIGHT) == arrays[index.index(FD_BATCH)]->height() - 1); EXPECT_EQ(index.IsLast(FD_WIDTH), index.index(FD_WIDTH) == arrays[index.index(FD_BATCH)]->width() - 1); EXPECT_TRUE(index.IsValid()); ++pos; } while (index.Increment()); LOG(INFO) << "pos=" << pos; index.InitToLast(); do { --pos; EXPECT_GE(index.t(), pos); EXPECT_EQ((*arrays.at(index.index(FD_BATCH)))(index.index(FD_HEIGHT), index.index(FD_WIDTH)), pos); StrideMap::Index copy(index); // Since a change in batch index changes the height and width, it isn't // necessarily true that the position is still valid, even when changing // to another valid batch index. if (index.IsLast(FD_BATCH)) { EXPECT_FALSE(copy.AddOffset(1, FD_BATCH)); } copy = index; EXPECT_EQ(index.IsLast(FD_HEIGHT), !copy.AddOffset(1, FD_HEIGHT)); copy = index; EXPECT_EQ(index.IsLast(FD_WIDTH), !copy.AddOffset(1, FD_WIDTH)); copy = index; if (index.index(FD_BATCH) == 0) { EXPECT_FALSE(copy.AddOffset(-1, FD_BATCH)); } copy = index; EXPECT_EQ(index.index(FD_HEIGHT) == 0, !copy.AddOffset(-1, FD_HEIGHT)); copy = index; EXPECT_EQ(index.index(FD_WIDTH) == 0, !copy.AddOffset(-1, FD_WIDTH)); copy = index; EXPECT_FALSE(copy.AddOffset(10, FD_WIDTH)); copy = index; EXPECT_FALSE(copy.AddOffset(-10, FD_HEIGHT)); EXPECT_TRUE(index.IsValid()); } while (index.Decrement()); #else LOG(INFO) << "Skip test because of missing xla::Array2D"; GTEST_SKIP(); #endif } TEST_F(StridemapTest, Scaling) { // This test verifies that with a batch of arrays of different sizes, the // scaling/reduction functions work as expected. #ifdef INCLUDE_TENSORFLOW std::vector>> arrays; arrays.push_back(SetupArray(3, 4, 0)); // 0-11 arrays.push_back(SetupArray(4, 5, 12)); // 12-31 arrays.push_back(SetupArray(4, 4, 32)); // 32-47 arrays.push_back(SetupArray(3, 5, 48)); // 48-62 std::vector> h_w_sizes; for (size_t i = 0; i < arrays.size(); ++i) { h_w_sizes.emplace_back(arrays[i].get()->height(), arrays[i].get()->width()); } StrideMap stride_map; stride_map.SetStride(h_w_sizes); // Scale x by 2, keeping y the same. std::vector values_x2 = {0, 1, 4, 5, 8, 9, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 53, 54, 58, 59}; StrideMap test_map(stride_map); test_map.ScaleXY(2, 1); StrideMap::Index index(test_map); int pos = 0; do { int expected_value = values_x2[pos++]; EXPECT_EQ((*arrays.at(index.index(FD_BATCH)))(index.index(FD_HEIGHT), index.index(FD_WIDTH)), expected_value); } while (index.Increment()); EXPECT_EQ(pos, values_x2.size()); test_map = stride_map; // Scale y by 2, keeping x the same. std::vector values_y2 = {0, 1, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 32, 33, 34, 35, 36, 37, 38, 39, 48, 49, 50, 51, 52}; test_map.ScaleXY(1, 2); index.InitToFirst(); pos = 0; do { int expected_value = values_y2[pos++]; EXPECT_EQ((*arrays.at(index.index(FD_BATCH)))(index.index(FD_HEIGHT), index.index(FD_WIDTH)), expected_value); } while (index.Increment()); EXPECT_EQ(pos, values_y2.size()); test_map = stride_map; // Scale x and y by 2. std::vector values_xy2 = {0, 1, 12, 13, 17, 18, 32, 33, 36, 37, 48, 49}; test_map.ScaleXY(2, 2); index.InitToFirst(); pos = 0; do { int expected_value = values_xy2[pos++]; EXPECT_EQ((*arrays.at(index.index(FD_BATCH)))(index.index(FD_HEIGHT), index.index(FD_WIDTH)), expected_value); } while (index.Increment()); EXPECT_EQ(pos, values_xy2.size()); test_map = stride_map; // Reduce Width to 1. std::vector values_x_to_1 = {0, 4, 8, 12, 17, 22, 27, 32, 36, 40, 44, 48, 53, 58}; test_map.ReduceWidthTo1(); index.InitToFirst(); pos = 0; do { int expected_value = values_x_to_1[pos++]; EXPECT_EQ((*arrays.at(index.index(FD_BATCH)))(index.index(FD_HEIGHT), index.index(FD_WIDTH)), expected_value); } while (index.Increment()); EXPECT_EQ(pos, values_x_to_1.size()); #else LOG(INFO) << "Skip test because of missing xla::Array2D"; GTEST_SKIP(); #endif } } // namespace tesseract