/////////////////////////////////////////////////////////////////////// // File: pain_points.cpp // Description: Functions that utilize the knowledge about the properties // of the paths explored by the segmentation search in order // to "pain points" - the locations in the ratings matrix // which should be classified next. // Author: Rika Antonova // Created: Mon Jun 20 11:26:43 PST 2012 // // (C) Copyright 2012, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #include "lm_pain_points.h" #include "associate.h" #include "dict.h" #include "genericheap.h" #include "lm_state.h" #include "matrix.h" #include "pageres.h" namespace tesseract { const float LMPainPoints::kDefaultPainPointPriorityAdjustment = 2.0f; const float LMPainPoints::kLooseMaxCharWhRatio = 2.5f; LMPainPointsType LMPainPoints::Deque(MATRIX_COORD *pp, float *priority) { for (int h = 0; h < LM_PPTYPE_NUM; ++h) { if (pain_points_heaps_[h].empty()) continue; *priority = pain_points_heaps_[h].PeekTop().key; *pp = pain_points_heaps_[h].PeekTop().data; pain_points_heaps_[h].Pop(nullptr); return static_cast(h); } return LM_PPTYPE_NUM; } void LMPainPoints::GenerateInitial(WERD_RES *word_res) { MATRIX *ratings = word_res->ratings; AssociateStats associate_stats; for (int col = 0; col < ratings->dimension(); ++col) { int row_end = MIN(ratings->dimension(), col + ratings->bandwidth() + 1); for (int row = col + 1; row < row_end; ++row) { MATRIX_COORD coord(col, row); if (coord.Valid(*ratings) && ratings->get(col, row) != NOT_CLASSIFIED) continue; // Add an initial pain point if needed. if (ratings->Classified(col, row - 1, dict_->WildcardID()) || (col + 1 < ratings->dimension() && ratings->Classified(col + 1, row, dict_->WildcardID()))) { GeneratePainPoint(col, row, LM_PPTYPE_SHAPE, 0.0, true, max_char_wh_ratio_, word_res); } } } } void LMPainPoints::GenerateFromPath(float rating_cert_scale, ViterbiStateEntry *vse, WERD_RES *word_res) { ViterbiStateEntry *curr_vse = vse; BLOB_CHOICE *curr_b = vse->curr_b; // The following pain point generation and priority calculation approaches // prioritize exploring paths with low average rating of the known part of // the path, while not relying on the ratings of the pieces to be combined. // // A pain point to combine the neighbors is generated for each pair of // neighboring blobs on the path (the path is represented by vse argument // given to GenerateFromPath()). The priority of each pain point is set to // the average rating (per outline length) of the path, not including the // ratings of the blobs to be combined. // The ratings of the blobs to be combined are not used to calculate the // priority, since it is not possible to determine from their magnitude // whether it will be beneficial to combine the blobs. The reason is that // chopped junk blobs (/ | - ') can have very good (low) ratings, however // combining them will be beneficial. Blobs with high ratings might be // over-joined pieces of characters, but also could be blobs from an unseen // font or chopped pieces of complex characters. while (curr_vse->parent_vse != nullptr) { ViterbiStateEntry* parent_vse = curr_vse->parent_vse; const MATRIX_COORD& curr_cell = curr_b->matrix_cell(); const MATRIX_COORD& parent_cell = parent_vse->curr_b->matrix_cell(); MATRIX_COORD pain_coord(parent_cell.col, curr_cell.row); if (!pain_coord.Valid(*word_res->ratings) || !word_res->ratings->Classified(parent_cell.col, curr_cell.row, dict_->WildcardID())) { // rat_subtr contains ratings sum of the two adjacent blobs to be merged. // rat_subtr will be subtracted from the ratings sum of the path, since // the blobs will be joined into a new blob, whose rating is yet unknown. float rat_subtr = curr_b->rating() + parent_vse->curr_b->rating(); // ol_subtr contains the outline length of the blobs that will be joined. float ol_subtr = AssociateUtils::ComputeOutlineLength(rating_cert_scale, *curr_b) + AssociateUtils::ComputeOutlineLength(rating_cert_scale, *(parent_vse->curr_b)); // ol_dif is the outline of the path without the two blobs to be joined. float ol_dif = vse->outline_length - ol_subtr; // priority is set to the average rating of the path per unit of outline, // not counting the ratings of the pieces to be joined. float priority = ol_dif > 0 ? (vse->ratings_sum-rat_subtr)/ol_dif : 0.0; GeneratePainPoint(pain_coord.col, pain_coord.row, LM_PPTYPE_PATH, priority, true, max_char_wh_ratio_, word_res); } else if (debug_level_ > 3) { tprintf("NO pain point (Classified) for col=%d row=%d type=%s\n", pain_coord.col, pain_coord.row, LMPainPointsTypeName[LM_PPTYPE_PATH]); BLOB_CHOICE_IT b_it(word_res->ratings->get(pain_coord.col, pain_coord.row)); for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { BLOB_CHOICE* choice = b_it.data(); choice->print_full(); } } curr_vse = parent_vse; curr_b = curr_vse->curr_b; } } void LMPainPoints::GenerateFromAmbigs(const DANGERR &fixpt, ViterbiStateEntry *vse, WERD_RES *word_res) { // Begins and ends in DANGERR vector now record the blob indices as used // by the ratings matrix. for (int d = 0; d < fixpt.size(); ++d) { const DANGERR_INFO &danger = fixpt[d]; // Only use dangerous ambiguities. if (danger.dangerous) { GeneratePainPoint(danger.begin, danger.end - 1, LM_PPTYPE_AMBIG, vse->cost, true, kLooseMaxCharWhRatio, word_res); } } } bool LMPainPoints::GeneratePainPoint( int col, int row, LMPainPointsType pp_type, float special_priority, bool ok_to_extend, float max_char_wh_ratio, WERD_RES *word_res) { MATRIX_COORD coord(col, row); if (coord.Valid(*word_res->ratings) && word_res->ratings->Classified(col, row, dict_->WildcardID())) { return false; } if (debug_level_ > 3) { tprintf("Generating pain point for col=%d row=%d type=%s\n", col, row, LMPainPointsTypeName[pp_type]); } // Compute associate stats. AssociateStats associate_stats; AssociateUtils::ComputeStats(col, row, nullptr, 0, fixed_pitch_, max_char_wh_ratio, word_res, debug_level_, &associate_stats); // For fixed-pitch fonts/languages: if the current combined blob overlaps // the next blob on the right and it is ok to extend the blob, try extending // the blob until there is no overlap with the next blob on the right or // until the width-to-height ratio becomes too large. if (ok_to_extend) { while (associate_stats.bad_fixed_pitch_right_gap && row + 1 < word_res->ratings->dimension() && !associate_stats.bad_fixed_pitch_wh_ratio) { AssociateUtils::ComputeStats(col, ++row, nullptr, 0, fixed_pitch_, max_char_wh_ratio, word_res, debug_level_, &associate_stats); } } if (associate_stats.bad_shape) { if (debug_level_ > 3) { tprintf("Discarded pain point with a bad shape\n"); } return false; } // Insert the new pain point into pain_points_heap_. if (pain_points_heaps_[pp_type].size() < max_heap_size_) { // Compute pain point priority. float priority; if (pp_type == LM_PPTYPE_PATH) { priority = special_priority; } else { priority = associate_stats.gap_sum; } MatrixCoordPair pain_point(priority, MATRIX_COORD(col, row)); pain_points_heaps_[pp_type].Push(&pain_point); if (debug_level_) { tprintf("Added pain point with priority %g\n", priority); } return true; } else { if (debug_level_) tprintf("Pain points heap is full\n"); return false; } } /** * Adjusts the pain point coordinates to cope with expansion of the ratings * matrix due to a split of the blob with the given index. */ void LMPainPoints::RemapForSplit(int index) { for (int i = 0; i < LM_PPTYPE_NUM; ++i) { GenericVector* heap = pain_points_heaps_[i].heap(); for (int j = 0; j < heap->size(); ++j) (*heap)[j].data.MapForSplit(index); } } } // namespace tesseract