/////////////////////////////////////////////////////////////////////// // File: lstmtrainer.h // Description: Top-level line trainer class for LSTM-based networks. // Author: Ray Smith // Created: Fri May 03 09:07:06 PST 2013 // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_LSTM_LSTMTRAINER_H_ #define TESSERACT_LSTM_LSTMTRAINER_H_ #include "imagedata.h" #include "lstmrecognizer.h" #include "rect.h" #include "tesscallback.h" namespace tesseract { class LSTM; class LSTMTrainer; class Parallel; class Reversed; class Softmax; class Series; // Enum for the types of errors that are counted. enum ErrorTypes { ET_RMS, // RMS activation error. ET_DELTA, // Number of big errors in deltas. ET_WORD_RECERR, // Output text string word recall error. ET_CHAR_ERROR, // Output text string total char error. ET_SKIP_RATIO, // Fraction of samples skipped. ET_COUNT // For array sizing. }; // Enum for the trainability_ flags. enum Trainability { TRAINABLE, // Non-zero delta error. PERFECT, // Zero delta error. UNENCODABLE, // Not trainable due to coding/alignment trouble. HI_PRECISION_ERR, // Hi confidence disagreement. NOT_BOXED, // Early in training and has no character boxes. }; // Enum to define the amount of data to get serialized. enum SerializeAmount { LIGHT, // Minimal data for remote training. NO_BEST_TRAINER, // Save an empty vector in place of best_trainer_. FULL, // All data including best_trainer_. }; // Enum to indicate how the sub_trainer_ training went. enum SubTrainerResult { STR_NONE, // Did nothing as not good enough. STR_UPDATED, // Subtrainer was updated, but didn't replace *this. STR_REPLACED // Subtrainer replaced *this. }; class LSTMTrainer; // Function to restore the trainer state from a given checkpoint. // Returns false on failure. typedef TessResultCallback2&, LSTMTrainer*>* CheckPointReader; // Function to save a checkpoint of the current trainer state. // Returns false on failure. SerializeAmount determines the amount of the // trainer to serialize, typically used for saving the best state. typedef TessResultCallback3*>* CheckPointWriter; // Function to compute and record error rates on some external test set(s). // Args are: iteration, mean errors, model, training stage. // Returns a STRING containing logging information about the tests. typedef TessResultCallback4* TestCallback; // Trainer class for LSTM networks. Most of the effort is in creating the // ideal target outputs from the transcription. A box file is used if it is // available, otherwise estimates of the char widths from the unicharset are // used to guide a DP search for the best fit to the transcription. class LSTMTrainer : public LSTMRecognizer { public: LSTMTrainer(); // Callbacks may be null, in which case defaults are used. LSTMTrainer(FileReader file_reader, FileWriter file_writer, CheckPointReader checkpoint_reader, CheckPointWriter checkpoint_writer, const char* model_base, const char* checkpoint_name, int debug_interval, inT64 max_memory); virtual ~LSTMTrainer(); // Tries to deserialize a trainer from the given file and silently returns // false in case of failure. If old_traineddata is not null, then it is // assumed that the character set is to be re-mapped from old_traineddata to // the new, with consequent change in weight matrices etc. bool TryLoadingCheckpoint(const char* filename, const char* old_traineddata); // Initializes the character set encode/decode mechanism directly from a // previously setup traineddata containing dawgs, UNICHARSET and // UnicharCompress. Note: Call before InitNetwork! void InitCharSet(const std::string& traineddata_path) { ASSERT_HOST(mgr_.Init(traineddata_path.c_str())); InitCharSet(); } void InitCharSet(const TessdataManager& mgr) { mgr_ = mgr; InitCharSet(); } // Initializes the trainer with a network_spec in the network description // net_flags control network behavior according to the NetworkFlags enum. // There isn't really much difference between them - only where the effects // are implemented. // For other args see NetworkBuilder::InitNetwork. // Note: Be sure to call InitCharSet before InitNetwork! bool InitNetwork(const STRING& network_spec, int append_index, int net_flags, float weight_range, float learning_rate, float momentum, float adam_beta); // Initializes a trainer from a serialized TFNetworkModel proto. // Returns the global step of TensorFlow graph or 0 if failed. // Building a compatible TF graph: See tfnetwork.proto. int InitTensorFlowNetwork(const std::string& tf_proto); // Resets all the iteration counters for fine tuning or training a head, // where we want the error reporting to reset. void InitIterations(); // Accessors. double ActivationError() const { return error_rates_[ET_DELTA]; } double CharError() const { return error_rates_[ET_CHAR_ERROR]; } const double* error_rates() const { return error_rates_; } double best_error_rate() const { return best_error_rate_; } int best_iteration() const { return best_iteration_; } int learning_iteration() const { return learning_iteration_; } int improvement_steps() const { return improvement_steps_; } void set_perfect_delay(int delay) { perfect_delay_ = delay; } const GenericVector& best_trainer() const { return best_trainer_; } // Returns the error that was just calculated by PrepareForBackward. double NewSingleError(ErrorTypes type) const { return error_buffers_[type][training_iteration() % kRollingBufferSize_]; } // Returns the error that was just calculated by TrainOnLine. Since // TrainOnLine rolls the error buffers, this is one further back than // NewSingleError. double LastSingleError(ErrorTypes type) const { return error_buffers_[type] [(training_iteration() + kRollingBufferSize_ - 1) % kRollingBufferSize_]; } const DocumentCache& training_data() const { return training_data_; } DocumentCache* mutable_training_data() { return &training_data_; } // If the training sample is usable, grid searches for the optimal // dict_ratio/cert_offset, and returns the results in a string of space- // separated triplets of ratio,offset=worderr. Trainability GridSearchDictParams( const ImageData* trainingdata, int iteration, double min_dict_ratio, double dict_ratio_step, double max_dict_ratio, double min_cert_offset, double cert_offset_step, double max_cert_offset, STRING* results); // Provides output on the distribution of weight values. void DebugNetwork(); // Loads a set of lstmf files that were created using the lstm.train config to // tesseract into memory ready for training. Returns false if nothing was // loaded. bool LoadAllTrainingData(const GenericVector& filenames, CachingStrategy cache_strategy, bool randomly_rotate); // Keeps track of best and locally worst error rate, using internally computed // values. See MaintainCheckpointsSpecific for more detail. bool MaintainCheckpoints(TestCallback tester, STRING* log_msg); // Keeps track of best and locally worst error_rate (whatever it is) and // launches tests using rec_model, when a new min or max is reached. // Writes checkpoints using train_model at appropriate times and builds and // returns a log message to indicate progress. Returns false if nothing // interesting happened. bool MaintainCheckpointsSpecific(int iteration, const GenericVector* train_model, const GenericVector* rec_model, TestCallback tester, STRING* log_msg); // Builds a string containing a progress message with current error rates. void PrepareLogMsg(STRING* log_msg) const; // Appends iteration learning_iteration()/training_iteration()/ // sample_iteration() to the log_msg. void LogIterations(const char* intro_str, STRING* log_msg) const; // TODO(rays) Add curriculum learning. // Returns true and increments the training_stage_ if the error rate has just // passed through the given threshold for the first time. bool TransitionTrainingStage(float error_threshold); // Returns the current training stage. int CurrentTrainingStage() const { return training_stage_; } // Writes to the given file. Returns false in case of error. virtual bool Serialize(SerializeAmount serialize_amount, const TessdataManager* mgr, TFile* fp) const; // Reads from the given file. Returns false in case of error. virtual bool DeSerialize(const TessdataManager* mgr, TFile* fp); // De-serializes the saved best_trainer_ into sub_trainer_, and adjusts the // learning rates (by scaling reduction, or layer specific, according to // NF_LAYER_SPECIFIC_LR). void StartSubtrainer(STRING* log_msg); // While the sub_trainer_ is behind the current training iteration and its // training error is at least kSubTrainerMarginFraction better than the // current training error, trains the sub_trainer_, and returns STR_UPDATED if // it did anything. If it catches up, and has a better error rate than the // current best, as well as a margin over the current error rate, then the // trainer in *this is replaced with sub_trainer_, and STR_REPLACED is // returned. STR_NONE is returned if the subtrainer wasn't good enough to // receive any training iterations. SubTrainerResult UpdateSubtrainer(STRING* log_msg); // Reduces network learning rates, either for everything, or for layers // independently, according to NF_LAYER_SPECIFIC_LR. void ReduceLearningRates(LSTMTrainer* samples_trainer, STRING* log_msg); // Considers reducing the learning rate independently for each layer down by // factor(<1), or leaving it the same, by double-training the given number of // samples and minimizing the amount of changing of sign of weight updates. // Even if it looks like all weights should remain the same, an adjustment // will be made to guarantee a different result when reverting to an old best. // Returns the number of layer learning rates that were reduced. int ReduceLayerLearningRates(double factor, int num_samples, LSTMTrainer* samples_trainer); // Converts the string to integer class labels, with appropriate null_char_s // in between if not in SimpleTextOutput mode. Returns false on failure. bool EncodeString(const STRING& str, GenericVector* labels) const { return EncodeString(str, GetUnicharset(), IsRecoding() ? &recoder_ : NULL, SimpleTextOutput(), null_char_, labels); } // Static version operates on supplied unicharset, encoder, simple_text. static bool EncodeString(const STRING& str, const UNICHARSET& unicharset, const UnicharCompress* recoder, bool simple_text, int null_char, GenericVector* labels); // Performs forward-backward on the given trainingdata. // Returns the sample that was used or NULL if the next sample was deemed // unusable. samples_trainer could be this or an alternative trainer that // holds the training samples. const ImageData* TrainOnLine(LSTMTrainer* samples_trainer, bool batch) { int sample_index = sample_iteration(); const ImageData* image = samples_trainer->training_data_.GetPageBySerial(sample_index); if (image != NULL) { Trainability trainable = TrainOnLine(image, batch); if (trainable == UNENCODABLE || trainable == NOT_BOXED) { return NULL; // Sample was unusable. } } else { ++sample_iteration_; } return image; } Trainability TrainOnLine(const ImageData* trainingdata, bool batch); // Prepares the ground truth, runs forward, and prepares the targets. // Returns a Trainability enum to indicate the suitability of the sample. Trainability PrepareForBackward(const ImageData* trainingdata, NetworkIO* fwd_outputs, NetworkIO* targets); // Writes the trainer to memory, so that the current training state can be // restored. *this must always be the master trainer that retains the only // copy of the training data and language model. trainer is the model that is // actually serialized. bool SaveTrainingDump(SerializeAmount serialize_amount, const LSTMTrainer* trainer, GenericVector* data) const; // Reads previously saved trainer from memory. *this must always be the // master trainer that retains the only copy of the training data and // language model. trainer is the model that is restored. bool ReadTrainingDump(const GenericVector& data, LSTMTrainer* trainer) const { if (data.empty()) return false; return ReadSizedTrainingDump(&data[0], data.size(), trainer); } bool ReadSizedTrainingDump(const char* data, int size, LSTMTrainer* trainer) const { return trainer->ReadLocalTrainingDump(&mgr_, data, size); } // Restores the model to *this. bool ReadLocalTrainingDump(const TessdataManager* mgr, const char* data, int size); // Sets up the data for MaintainCheckpoints from a light ReadTrainingDump. void SetupCheckpointInfo(); // Writes the full recognition traineddata to the given filename. bool SaveTraineddata(const STRING& filename); // Writes the recognizer to memory, so that it can be used for testing later. void SaveRecognitionDump(GenericVector* data) const; // Returns a suitable filename for a training dump, based on the model_base_, // the iteration and the error rates. STRING DumpFilename() const; // Fills the whole error buffer of the given type with the given value. void FillErrorBuffer(double new_error, ErrorTypes type); // Helper generates a map from each current recoder_ code (ie softmax index) // to the corresponding old_recoder code, or -1 if there isn't one. std::vector MapRecoder(const UNICHARSET& old_chset, const UnicharCompress& old_recoder) const; protected: // Private version of InitCharSet above finishes the job after initializing // the mgr_ data member. void InitCharSet(); // Helper computes and sets the null_char_. void SetNullChar(); // Factored sub-constructor sets up reasonable default values. void EmptyConstructor(); // Outputs the string and periodically displays the given network inputs // as an image in the given window, and the corresponding labels at the // corresponding x_starts. // Returns false if the truth string is empty. bool DebugLSTMTraining(const NetworkIO& inputs, const ImageData& trainingdata, const NetworkIO& fwd_outputs, const GenericVector& truth_labels, const NetworkIO& outputs); // Displays the network targets as line a line graph. void DisplayTargets(const NetworkIO& targets, const char* window_name, ScrollView** window); // Builds a no-compromises target where the first positions should be the // truth labels and the rest is padded with the null_char_. bool ComputeTextTargets(const NetworkIO& outputs, const GenericVector& truth_labels, NetworkIO* targets); // Builds a target using standard CTC. truth_labels should be pre-padded with // nulls wherever desired. They don't have to be between all labels. // outputs is input-output, as it gets clipped to minimum probability. bool ComputeCTCTargets(const GenericVector& truth_labels, NetworkIO* outputs, NetworkIO* targets); // Computes network errors, and stores the results in the rolling buffers, // along with the supplied text_error. // Returns the delta error of the current sample (not running average.) double ComputeErrorRates(const NetworkIO& deltas, double char_error, double word_error); // Computes the network activation RMS error rate. double ComputeRMSError(const NetworkIO& deltas); // Computes network activation winner error rate. (Number of values that are // in error by >= 0.5 divided by number of time-steps.) More closely related // to final character error than RMS, but still directly calculable from // just the deltas. Because of the binary nature of the targets, zero winner // error is a sufficient but not necessary condition for zero char error. double ComputeWinnerError(const NetworkIO& deltas); // Computes a very simple bag of chars char error rate. double ComputeCharError(const GenericVector& truth_str, const GenericVector& ocr_str); // Computes a very simple bag of words word recall error rate. // NOTE that this is destructive on both input strings. double ComputeWordError(STRING* truth_str, STRING* ocr_str); // Updates the error buffer and corresponding mean of the given type with // the new_error. void UpdateErrorBuffer(double new_error, ErrorTypes type); // Rolls error buffers and reports the current means. void RollErrorBuffers(); // Given that error_rate is either a new min or max, updates the best/worst // error rates, and record of progress. STRING UpdateErrorGraph(int iteration, double error_rate, const GenericVector& model_data, TestCallback tester); protected: // Alignment display window. ScrollView* align_win_; // CTC target display window. ScrollView* target_win_; // CTC output display window. ScrollView* ctc_win_; // Reconstructed image window. ScrollView* recon_win_; // How often to display a debug image. int debug_interval_; // Iteration at which the last checkpoint was dumped. int checkpoint_iteration_; // Basename of files to save best models to. STRING model_base_; // Checkpoint filename. STRING checkpoint_name_; // Training data. bool randomly_rotate_; DocumentCache training_data_; // Name to use when saving best_trainer_. STRING best_model_name_; // Number of available training stages. int num_training_stages_; // Checkpointing callbacks. FileReader file_reader_; FileWriter file_writer_; // TODO(rays) These are pointers, and must be deleted. Switch to unique_ptr // when we can commit to c++11. CheckPointReader checkpoint_reader_; CheckPointWriter checkpoint_writer_; // ===Serialized data to ensure that a restart produces the same results.=== // These members are only serialized when serialize_amount != LIGHT. // Best error rate so far. double best_error_rate_; // Snapshot of all error rates at best_iteration_. double best_error_rates_[ET_COUNT]; // Iteration of best_error_rate_. int best_iteration_; // Worst error rate since best_error_rate_. double worst_error_rate_; // Snapshot of all error rates at worst_iteration_. double worst_error_rates_[ET_COUNT]; // Iteration of worst_error_rate_. int worst_iteration_; // Iteration at which the process will be thought stalled. int stall_iteration_; // Saved recognition models for computing test error for graph points. GenericVector best_model_data_; GenericVector worst_model_data_; // Saved trainer for reverting back to last known best. GenericVector best_trainer_; // A subsidiary trainer running with a different learning rate until either // *this or sub_trainer_ hits a new best. LSTMTrainer* sub_trainer_; // Error rate at which last best model was dumped. float error_rate_of_last_saved_best_; // Current stage of training. int training_stage_; // History of best error rate against iteration. Used for computing the // number of steps to each 2% improvement. GenericVector best_error_history_; GenericVector best_error_iterations_; // Number of iterations since the best_error_rate_ was 2% more than it is now. int improvement_steps_; // Number of iterations that yielded a non-zero delta error and thus provided // significant learning. learning_iteration_ <= training_iteration_. // learning_iteration_ is used to measure rate of learning progress. int learning_iteration_; // Saved value of sample_iteration_ before looking for the the next sample. int prev_sample_iteration_; // How often to include a PERFECT training sample in backprop. // A PERFECT training sample is used if the current // training_iteration_ > last_perfect_training_iteration_ + perfect_delay_, // so with perfect_delay_ == 0, all samples are used, and with // perfect_delay_ == 4, at most 1 in 5 samples will be perfect. int perfect_delay_; // Value of training_iteration_ at which the last PERFECT training sample // was used in back prop. int last_perfect_training_iteration_; // Rolling buffers storing recent training errors are indexed by // training_iteration % kRollingBufferSize_. static const int kRollingBufferSize_ = 1000; GenericVector error_buffers_[ET_COUNT]; // Rounded mean percent trailing training errors in the buffers. double error_rates_[ET_COUNT]; // RMS training error. // Traineddata file with optional dawgs + UNICHARSET and recoder. TessdataManager mgr_; }; } // namespace tesseract. #endif // TESSERACT_LSTM_LSTMTRAINER_H_