/////////////////////////////////////////////////////////////////////// // File: blamer.h // Description: Module allowing precise error causes to be allocated. // Author: Rike Antonova // Refactored: Ray Smith // Created: Mon Feb 04 14:37:01 PST 2013 // // (C) Copyright 2013, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_CCSTRUCT_BLAMER_H_ #define TESSERACT_CCSTRUCT_BLAMER_H_ #include #include "boxword.h" #include "genericvector.h" #include "matrix.h" #include "params_training_featdef.h" #include "ratngs.h" #include "strngs.h" #include "tesscallback.h" static const inT16 kBlamerBoxTolerance = 5; // Enum for expressing the source of error. // Note: Please update kIncorrectResultReasonNames when modifying this enum. enum IncorrectResultReason { // The text recorded in best choice == truth text IRR_CORRECT, // Either: Top choice is incorrect and is a dictionary word (language model // is unlikely to help correct such errors, so blame the classifier). // Or: the correct unichar was not included in shortlist produced by the // classifier at all. IRR_CLASSIFIER, // Chopper have not found one or more splits that correspond to the correct // character bounding boxes recorded in BlamerBundle::truth_word. IRR_CHOPPER, // Classifier did include correct unichars for each blob in the correct // segmentation, however its rating could have been too bad to allow the // language model to pull out the correct choice. On the other hand the // strength of the language model might have been too weak to favor the // correct answer, this we call this case a classifier-language model // tradeoff error. IRR_CLASS_LM_TRADEOFF, // Page layout failed to produce the correct bounding box. Blame page layout // if the truth was not found for the word, which implies that the bounding // box of the word was incorrect (no truth word had a similar bounding box). IRR_PAGE_LAYOUT, // SegSearch heuristic prevented one or more blobs from the correct // segmentation state to be classified (e.g. the blob was too wide). IRR_SEGSEARCH_HEUR, // The correct segmentaiton state was not explored because of poor SegSearch // pain point prioritization. We blame SegSearch pain point prioritization // if the best rating of a choice constructed from correct segmentation is // better than that of the best choice (i.e. if we got to explore the correct // segmentation state, language model would have picked the correct choice). IRR_SEGSEARCH_PP, // Same as IRR_CLASS_LM_TRADEOFF, but used when we only run chopper on a word, // and thus use the old language model (permuters). // TODO(antonova): integrate the new language mode with chopper IRR_CLASS_OLD_LM_TRADEOFF, // If there is an incorrect adaptive template match with a better score than // a correct one (either pre-trained or adapted), mark this as adaption error. IRR_ADAPTION, // split_and_recog_word() failed to find a suitable split in truth. IRR_NO_TRUTH_SPLIT, // Truth is not available for this word (e.g. when words in corrected content // file are turned into ~~~~ because an appropriate alignment was not found. IRR_NO_TRUTH, // The text recorded in best choice != truth text, but none of the above // reasons are set. IRR_UNKNOWN, IRR_NUM_REASONS }; // Blamer-related information to determine the source of errors. struct BlamerBundle { static const char *IncorrectReasonName(IncorrectResultReason irr); BlamerBundle() : truth_has_char_boxes_(false), incorrect_result_reason_(IRR_CORRECT), lattice_data_(NULL) { ClearResults(); } BlamerBundle(const BlamerBundle &other) { this->CopyTruth(other); this->CopyResults(other); } ~BlamerBundle() { delete[] lattice_data_; } // Accessors. STRING TruthString() const { STRING truth_str; for (int i = 0; i < truth_text_.length(); ++i) truth_str += truth_text_[i]; return truth_str; } IncorrectResultReason incorrect_result_reason() const { return incorrect_result_reason_; } bool NoTruth() const { return incorrect_result_reason_ == IRR_NO_TRUTH || incorrect_result_reason_ == IRR_PAGE_LAYOUT; } bool HasDebugInfo() const { return debug_.length() > 0 || misadaption_debug_.length() > 0; } const STRING& debug() const { return debug_; } const STRING& misadaption_debug() const { return misadaption_debug_; } void UpdateBestRating(float rating) { if (rating < best_correctly_segmented_rating_) best_correctly_segmented_rating_ = rating; } int correct_segmentation_length() const { return correct_segmentation_cols_.length(); } // Returns true if the given ratings matrix col,row position is included // in the correct segmentation path at the given index. bool MatrixPositionCorrect(int index, const MATRIX_COORD& coord) { return correct_segmentation_cols_[index] == coord.col && correct_segmentation_rows_[index] == coord.row; } void set_best_choice_is_dict_and_top_choice(bool value) { best_choice_is_dict_and_top_choice_ = value; } const char* lattice_data() const { return lattice_data_; } int lattice_size() const { return lattice_size_; // size of lattice_data in bytes } void set_lattice_data(const char* data, int size) { lattice_size_ = size; delete [] lattice_data_; lattice_data_ = new char[lattice_size_]; memcpy(lattice_data_, data, lattice_size_); } const tesseract::ParamsTrainingBundle& params_training_bundle() const { return params_training_bundle_; } // Adds a new ParamsTrainingHypothesis to the current hypothesis list. void AddHypothesis(const tesseract::ParamsTrainingHypothesis& hypo) { params_training_bundle_.AddHypothesis(hypo); } // Functions to setup the blamer. // Whole word string, whole word bounding box. void SetWordTruth(const UNICHARSET& unicharset, const char* truth_str, const TBOX& word_box); // Single "character" string, "character" bounding box. // May be called multiple times to indicate the characters in a word. void SetSymbolTruth(const UNICHARSET& unicharset, const char* char_str, const TBOX& char_box); // Marks that there is something wrong with the truth text, like it contains // reject characters. void SetRejectedTruth(); // Returns true if the provided word_choice is correct. bool ChoiceIsCorrect(const WERD_CHOICE* word_choice) const; void ClearResults() { norm_truth_word_.DeleteAllBoxes(); norm_box_tolerance_ = 0; if (!NoTruth()) incorrect_result_reason_ = IRR_CORRECT; debug_ = ""; segsearch_is_looking_for_blame_ = false; best_correctly_segmented_rating_ = WERD_CHOICE::kBadRating; correct_segmentation_cols_.clear(); correct_segmentation_rows_.clear(); best_choice_is_dict_and_top_choice_ = false; delete[] lattice_data_; lattice_data_ = NULL; lattice_size_ = 0; } void CopyTruth(const BlamerBundle &other) { truth_has_char_boxes_ = other.truth_has_char_boxes_; truth_word_ = other.truth_word_; truth_text_ = other.truth_text_; incorrect_result_reason_ = (other.NoTruth() ? other.incorrect_result_reason_ : IRR_CORRECT); } void CopyResults(const BlamerBundle &other) { norm_truth_word_ = other.norm_truth_word_; norm_box_tolerance_ = other.norm_box_tolerance_; incorrect_result_reason_ = other.incorrect_result_reason_; segsearch_is_looking_for_blame_ = other.segsearch_is_looking_for_blame_; best_correctly_segmented_rating_ = other.best_correctly_segmented_rating_; correct_segmentation_cols_ = other.correct_segmentation_cols_; correct_segmentation_rows_ = other.correct_segmentation_rows_; best_choice_is_dict_and_top_choice_ = other.best_choice_is_dict_and_top_choice_; if (other.lattice_data_ != NULL) { lattice_data_ = new char[other.lattice_size_]; memcpy(lattice_data_, other.lattice_data_, other.lattice_size_); lattice_size_ = other.lattice_size_; } else { lattice_data_ = NULL; } } const char *IncorrectReason() const; // Appends choice and truth details to the given debug string. void FillDebugString(const STRING &msg, const WERD_CHOICE *choice, STRING *debug); // Sets up the norm_truth_word from truth_word using the given DENORM. void SetupNormTruthWord(const DENORM& denorm); // Splits *this into two pieces in bundle1 and bundle2 (preallocated, empty // bundles) where the right edge/ of the left-hand word is word1_right, // and the left edge of the right-hand word is word2_left. void SplitBundle(int word1_right, int word2_left, bool debug, BlamerBundle* bundle1, BlamerBundle* bundle2) const; // "Joins" the blames from bundle1 and bundle2 into *this. void JoinBlames(const BlamerBundle& bundle1, const BlamerBundle& bundle2, bool debug); // If a blob with the same bounding box as one of the truth character // bounding boxes is not classified as the corresponding truth character // blames character classifier for incorrect answer. void BlameClassifier(const UNICHARSET& unicharset, const TBOX& blob_box, const BLOB_CHOICE_LIST& choices, bool debug); // Checks whether chops were made at all the character bounding box // boundaries in word->truth_word. If not - blames the chopper for an // incorrect answer. void SetChopperBlame(const WERD_RES* word, bool debug); // Blames the classifier or the language model if, after running only the // chopper, best_choice is incorrect and no blame has been yet set. // Blames the classifier if best_choice is classifier's top choice and is a // dictionary word (i.e. language model could not have helped). // Otherwise, blames the language model (formerly permuter word adjustment). void BlameClassifierOrLangModel( const WERD_RES* word, const UNICHARSET& unicharset, bool valid_permuter, bool debug); // Sets up the correct_segmentation_* to mark the correct bounding boxes. void SetupCorrectSegmentation(const TWERD* word, bool debug); // Returns true if a guided segmentation search is needed. bool GuidedSegsearchNeeded(const WERD_CHOICE *best_choice) const; // Setup ready to guide the segmentation search to the correct segmentation. // The callback pp_cb is used to avoid a cyclic dependency. // It calls into LMPainPoints::GenerateForBlamer by pre-binding the // WERD_RES, and the LMPainPoints itself. // pp_cb must be a permanent callback, and should be deleted by the caller. void InitForSegSearch(const WERD_CHOICE *best_choice, MATRIX* ratings, UNICHAR_ID wildcard_id, bool debug, STRING *debug_str, TessResultCallback2* pp_cb); // Returns true if the guided segsearch is in progress. bool GuidedSegsearchStillGoing() const; // The segmentation search has ended. Sets the blame appropriately. void FinishSegSearch(const WERD_CHOICE *best_choice, bool debug, STRING *debug_str); // If the bundle is null or still does not indicate the correct result, // fix it and use some backup reason for the blame. static void LastChanceBlame(bool debug, WERD_RES* word); // Sets the misadaption debug if this word is incorrect, as this word is // being adapted to. void SetMisAdaptionDebug(const WERD_CHOICE *best_choice, bool debug); private: void SetBlame(IncorrectResultReason irr, const STRING &msg, const WERD_CHOICE *choice, bool debug) { incorrect_result_reason_ = irr; debug_ = IncorrectReason(); debug_ += " to blame: "; FillDebugString(msg, choice, &debug_); if (debug) tprintf("SetBlame(): %s", debug_.string()); } private: // Set to true when bounding boxes for individual unichars are recorded. bool truth_has_char_boxes_; // The true_word (in the original image coordinate space) contains ground // truth bounding boxes for this WERD_RES. tesseract::BoxWord truth_word_; // Same as above, but in normalized coordinates // (filled in by WERD_RES::SetupForRecognition()). tesseract::BoxWord norm_truth_word_; // Tolerance for bounding box comparisons in normalized space. int norm_box_tolerance_; // Contains ground truth unichar for each of the bounding boxes in truth_word. GenericVector truth_text_; // The reason for incorrect OCR result. IncorrectResultReason incorrect_result_reason_; // Debug text associated with the blame. STRING debug_; // Misadaption debug information (filled in if this word was misadapted to). STRING misadaption_debug_; // Variables used by the segmentation search when looking for the blame. // Set to true while segmentation search is continued after the usual // termination condition in order to look for the blame. bool segsearch_is_looking_for_blame_; // Best rating for correctly segmented path // (set and used by SegSearch when looking for blame). float best_correctly_segmented_rating_; // Vectors populated by SegSearch to indicate column and row indices that // correspond to blobs with correct bounding boxes. GenericVector correct_segmentation_cols_; GenericVector correct_segmentation_rows_; // Set to true if best choice is a dictionary word and // classifier's top choice. bool best_choice_is_dict_and_top_choice_; // Serialized segmentation search lattice. char *lattice_data_; int lattice_size_; // size of lattice_data in bytes // Information about hypotheses (paths) explored by the segmentation search. tesseract::ParamsTrainingBundle params_training_bundle_; }; #endif // TESSERACT_CCSTRUCT_BLAMER_H_