// Copyright 2008 Google Inc. // All Rights Reserved. // Author: ahmadab@google.com (Ahmad Abdulkader) // // neural_net.cpp: Declarations of a class for an object that // represents an arbitrary network of neurons // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include #include #include "neural_net.h" #include "input_file_buffer.h" namespace tesseract { NeuralNet::NeuralNet() { Init(); } NeuralNet::~NeuralNet() { // clean up the wts chunks vector for (int vec = 0; vec < static_cast(wts_vec_.size()); vec++) { delete wts_vec_[vec]; } // clean up neurons delete []neurons_; // clean up nodes for (int node_idx = 0; node_idx < neuron_cnt_; node_idx++) { delete []fast_nodes_[node_idx].inputs; } } // Initiaization function void NeuralNet::Init() { read_only_ = true; auto_encoder_ = false; alloc_wgt_cnt_ = 0; wts_cnt_ = 0; neuron_cnt_ = 0; in_cnt_ = 0; out_cnt_ = 0; wts_vec_.clear(); neurons_ = NULL; inputs_mean_.clear(); inputs_std_dev_.clear(); inputs_min_.clear(); inputs_max_.clear(); } // Does a fast feedforward for read_only nets // Templatized for float and double Types template bool NeuralNet::FastFeedForward(const Type *inputs, Type *outputs) { int node_idx = 0; Node *node = &fast_nodes_[0]; // feed inputs in and offset them by the pre-computed bias for (node_idx = 0; node_idx < in_cnt_; node_idx++, node++) { node->out = inputs[node_idx] - node->bias; } // compute nodes activations and outputs for (;node_idx < neuron_cnt_; node_idx++, node++) { double activation = -node->bias; for (int fan_in_idx = 0; fan_in_idx < node->fan_in_cnt; fan_in_idx++) { activation += (node->inputs[fan_in_idx].input_weight * node->inputs[fan_in_idx].input_node->out); } node->out = Neuron::Sigmoid(activation); } // copy the outputs to the output buffers node = &fast_nodes_[neuron_cnt_ - out_cnt_]; for (node_idx = 0; node_idx < out_cnt_; node_idx++, node++) { outputs[node_idx] = node->out; } return true; } // Performs a feedforward for general nets. Used mainly in training mode // Templatized for float and double Types template bool NeuralNet::FeedForward(const Type *inputs, Type *outputs) { // call the fast version in case of readonly nets if (read_only_) { return FastFeedForward(inputs, outputs); } // clear all neurons Clear(); // for auto encoders, apply no input normalization if (auto_encoder_) { for (int in = 0; in < in_cnt_; in++) { neurons_[in].set_output(inputs[in]); } } else { // Input normalization : subtract mean and divide by stddev for (int in = 0; in < in_cnt_; in++) { neurons_[in].set_output((inputs[in] - inputs_min_[in]) / (inputs_max_[in] - inputs_min_[in])); neurons_[in].set_output((neurons_[in].output() - inputs_mean_[in]) / inputs_std_dev_[in]); } } // compute the net outputs: follow a pull model each output pulls the // outputs of its input nodes and so on for (int out = neuron_cnt_ - out_cnt_; out < neuron_cnt_; out++) { neurons_[out].FeedForward(); // copy the values to the output buffer outputs[out] = neurons_[out].output(); } return true; } // Sets a connection between two neurons bool NeuralNet::SetConnection(int from, int to) { // allocate the wgt float *wts = AllocWgt(1); if (wts == NULL) { return false; } // register the connection neurons_[to].AddFromConnection(neurons_ + from, wts, 1); return true; } // Create a fast readonly version of the net bool NeuralNet::CreateFastNet() { fast_nodes_.resize(neuron_cnt_); // build the node structures int wts_cnt = 0; for (int node_idx = 0; node_idx < neuron_cnt_; node_idx++) { Node *node = &fast_nodes_[node_idx]; if (neurons_[node_idx].node_type() == Neuron::Input) { // Input neurons have no fan-in node->fan_in_cnt = 0; node->inputs = NULL; // Input bias is the normalization offset computed from // training input stats if (fabs(inputs_max_[node_idx] - inputs_min_[node_idx]) < kMinInputRange) { // if the range approaches zero, the stdev is not defined, // this indicates that this input does not change. // Set the bias to zero node->bias = 0.0f; } else { node->bias = inputs_min_[node_idx] + (inputs_mean_[node_idx] * (inputs_max_[node_idx] - inputs_min_[node_idx])); } } else { node->bias = neurons_[node_idx].bias(); node->fan_in_cnt = neurons_[node_idx].fan_in_cnt(); // allocate memory for fan-in nodes node->inputs = new WeightedNode[node->fan_in_cnt]; for (int fan_in = 0; fan_in < node->fan_in_cnt; fan_in++) { // identify fan-in neuron const int id = neurons_[node_idx].fan_in(fan_in)->id(); // Feedback connections are not allowed and should never happen if (id >= node_idx) { return false; } // add the the fan-in neuron and its wgt node->inputs[fan_in].input_node = &fast_nodes_[id]; float wgt_val = neurons_[node_idx].fan_in_wts(fan_in); // for input neurons normalize the wgt by the input scaling // values to save time during feedforward if (neurons_[node_idx].fan_in(fan_in)->node_type() == Neuron::Input) { // if the range approaches zero, the stdev is not defined, // this indicates that this input does not change. // Set the weight to zero if (fabs(inputs_max_[id] - inputs_min_[id]) < kMinInputRange) { wgt_val = 0.0f; } else { wgt_val /= ((inputs_max_[id] - inputs_min_[id]) * inputs_std_dev_[id]); } } node->inputs[fan_in].input_weight = wgt_val; } // incr wgt count to validate against at the end wts_cnt += node->fan_in_cnt; } } // sanity check return wts_cnt_ == wts_cnt; } // returns a pointer to the requested set of weights // Allocates in chunks float * NeuralNet::AllocWgt(int wgt_cnt) { // see if need to allocate a new chunk of wts if (wts_vec_.size() == 0 || (alloc_wgt_cnt_ + wgt_cnt) > kWgtChunkSize) { // add the new chunck to the wts_chunks vector wts_vec_.push_back(new vector (kWgtChunkSize)); alloc_wgt_cnt_ = 0; } float *ret_ptr = &((*wts_vec_.back())[alloc_wgt_cnt_]); // incr usage counts alloc_wgt_cnt_ += wgt_cnt; wts_cnt_ += wgt_cnt; return ret_ptr; } // create a new net object using an input file as a source NeuralNet *NeuralNet::FromFile(const string file_name) { // open the file InputFileBuffer input_buff(file_name); // create a new net object using input buffer NeuralNet *net_obj = FromInputBuffer(&input_buff); return net_obj; } // create a net object from an input buffer NeuralNet *NeuralNet::FromInputBuffer(InputFileBuffer *ib) { // create a new net object NeuralNet *net_obj = new NeuralNet(); // load the net if (!net_obj->ReadBinary(ib)) { delete net_obj; net_obj = NULL; } return net_obj; } // Compute the output of a specific output node. // This function is useful for application that are interested in a single // output of the net and do not want to waste time on the rest // This is the fast-read-only version of this function template bool NeuralNet::FastGetNetOutput(const Type *inputs, int output_id, Type *output) { // feed inputs in and offset them by the pre-computed bias int node_idx = 0; Node *node = &fast_nodes_[0]; for (node_idx = 0; node_idx < in_cnt_; node_idx++, node++) { node->out = inputs[node_idx] - node->bias; } // compute nodes' activations and outputs for hidden nodes if any int hidden_node_cnt = neuron_cnt_ - out_cnt_; for (;node_idx < hidden_node_cnt; node_idx++, node++) { double activation = -node->bias; for (int fan_in_idx = 0; fan_in_idx < node->fan_in_cnt; fan_in_idx++) { activation += (node->inputs[fan_in_idx].input_weight * node->inputs[fan_in_idx].input_node->out); } node->out = Neuron::Sigmoid(activation); } // compute the output of the required output node node += output_id; double activation = -node->bias; for (int fan_in_idx = 0; fan_in_idx < node->fan_in_cnt; fan_in_idx++) { activation += (node->inputs[fan_in_idx].input_weight * node->inputs[fan_in_idx].input_node->out); } (*output) = Neuron::Sigmoid(activation); return true; } // Performs a feedforward for general nets. Used mainly in training mode // Templatized for float and double Types template bool NeuralNet::GetNetOutput(const Type *inputs, int output_id, Type *output) { // validate output id if (output_id < 0 || output_id >= out_cnt_) { return false; } // call the fast version in case of readonly nets if (read_only_) { return FastGetNetOutput(inputs, output_id, output); } // For the slow version, we'll just call FeedForward and return the // appropriate output vector outputs(out_cnt_); if (!FeedForward(inputs, &outputs[0])) { return false; } (*output) = outputs[output_id]; return true; } // Instantiate all supported templates now that the functions have been defined. template bool NeuralNet::FeedForward(const float *inputs, float *outputs); template bool NeuralNet::FeedForward(const double *inputs, double *outputs); template bool NeuralNet::FastFeedForward(const float *inputs, float *outputs); template bool NeuralNet::FastFeedForward(const double *inputs, double *outputs); template bool NeuralNet::GetNetOutput(const float *inputs, int output_id, float *output); template bool NeuralNet::GetNetOutput(const double *inputs, int output_id, double *output); template bool NeuralNet::FastGetNetOutput(const float *inputs, int output_id, float *output); template bool NeuralNet::FastGetNetOutput(const double *inputs, int output_id, double *output); template bool NeuralNet::ReadBinary(InputFileBuffer *input_buffer); }