/////////////////////////////////////////////////////////////////////// // File: thresholder.cpp // Description: Base API for thresolding images in tesseract. // Author: Ray Smith // Created: Mon May 12 11:28:15 PDT 2008 // // (C) Copyright 2008, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // /////////////////////////////////////////////////////////////////////// // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H #include "config_auto.h" #endif #ifdef HAVE_LIBLEPT // Include leptonica library only if autoconf (or makefile etc) tell us to. #include "allheaders.h" #endif #include "thresholder.h" #include #include "img.h" #include "otsuthr.h" namespace tesseract { ImageThresholder::ImageThresholder() : #ifdef HAVE_LIBLEPT pix_(NULL), #endif image_data_(NULL), image_width_(0), image_height_(0), image_bytespp_(0), image_bytespl_(0) { SetRectangle(0, 0, 0, 0); } ImageThresholder::~ImageThresholder() { Clear(); } // Destroy the Pix if there is one, freeing memory. void ImageThresholder::Clear() { #ifdef HAVE_LIBLEPT if (pix_ != NULL) { pixDestroy(&pix_); pix_ = NULL; } #endif image_data_ = NULL; } // Return true if no image has been set. bool ImageThresholder::IsEmpty() const { #ifdef HAVE_LIBLEPT if (pix_ != NULL) return false; #endif return image_data_ == NULL; } // SetImage makes a copy of only the metadata, not the underlying // image buffer. It promises to treat the source as read-only in either case, // but in return assumes that the Pix or image buffer remain valid // throughout the life of the ImageThresholder. // Greyscale of 8 and color of 24 or 32 bits per pixel may be given. // Palette color images will not work properly and must be converted to // 24 bit. // Binary images of 1 bit per pixel may also be given but they must be // byte packed with the MSB of the first byte being the first pixel, and a // one pixel is WHITE. For binary images set bytes_per_pixel=0. void ImageThresholder::SetImage(const unsigned char* imagedata, int width, int height, int bytes_per_pixel, int bytes_per_line) { #ifdef HAVE_LIBLEPT if (pix_ != NULL) pixDestroy(&pix_); pix_ = NULL; #endif image_data_ = imagedata; image_width_ = width; image_height_ = height; image_bytespp_ = bytes_per_pixel; image_bytespl_ = bytes_per_line; Init(); } // Store the coordinates of the rectangle to process for later use. // Doesn't actually do any thresholding. void ImageThresholder::SetRectangle(int left, int top, int width, int height) { rect_left_ = left; rect_top_ = top; rect_width_ = width; rect_height_ = height; } // Get enough parameters to be able to rebuild bounding boxes in the // original image (not just within the rectangle). // Left and top are enough with top-down coordinates, but // the height of the rectangle and the image are needed for bottom-up. void ImageThresholder::GetImageSizes(int* left, int* top, int* width, int* height, int* imagewidth, int* imageheight) { *left = rect_left_; *top = rect_top_; *width = rect_width_; *height = rect_height_; *imagewidth = image_width_; *imageheight = image_height_; } // Return true if HAVE_LIBLEPT and this thresholder implements the Pix // interface. bool ImageThresholder::HasThresholdToPix() const { #ifdef HAVE_LIBLEPT return true; #else return false; #endif } // Threshold the source image as efficiently as possible to the output // tesseract IMAGE class. void ImageThresholder::ThresholdToIMAGE(IMAGE* image) { #ifdef HAVE_LIBLEPT if (pix_ != NULL) { if (image_bytespp_ == 0) { // We have a binary image, so it just has to be converted. CopyBinaryRectPixToIMAGE(image); } else { if (image_bytespp_ == 4) { // Color data can just be passed direct. const uinT32* data = pixGetData(pix_); OtsuThresholdRectToIMAGE(reinterpret_cast(data), image_bytespp_, image_bytespl_, image); } else { // Convert 8-bit to IMAGE and then pass its // buffer to the raw interface to complete the conversion. IMAGE temp_image; temp_image.FromPix(pix_); OtsuThresholdRectToIMAGE(temp_image.get_buffer(), image_bytespp_, COMPUTE_IMAGE_XDIM(temp_image.get_xsize(), temp_image.get_bpp()), image); } } return; } #endif if (image_bytespp_ > 0) { // Threshold grey or color. OtsuThresholdRectToIMAGE(image_data_, image_bytespp_, image_bytespl_, image); } else { CopyBinaryRectRawToIMAGE(image); } } #ifdef HAVE_LIBLEPT // NOTE: Opposite to SetImage for raw images, SetImage for Pix clones its // input, so the source pix may be pixDestroyed immediately after. void ImageThresholder::SetImage(const Pix* pix) { image_data_ = NULL; if (pix_ != NULL) pixDestroy(&pix_); Pix* src = const_cast(pix); int depth; pixGetDimensions(src, &image_width_, &image_height_, &depth); // Convert the image as necessary so it is one of binary, plain RGB, or // 8 bit with no colormap. if (depth > 1 && depth < 8) { pix_ = pixConvertTo8(src, false); } else if (pixGetColormap(src)) { pix_ = pixRemoveColormap(src, REMOVE_CMAP_BASED_ON_SRC); } else { pix_ = pixClone(src); } depth = pixGetDepth(pix_); image_bytespp_ = depth / 8; image_bytespl_ = pixGetWpl(pix_) * sizeof(l_uint32); Init(); } // Threshold the source image as efficiently as possible to the output Pix. // Creates a Pix and sets pix to point to the resulting pointer. // Caller must use pixDestroy to free the created Pix. void ImageThresholder::ThresholdToPix(Pix** pix) { if (pix_ != NULL) { if (image_bytespp_ == 0) { // We have a binary image, so it just has to be cloned. *pix = GetPixRect(); } else { if (image_bytespp_ == 4) { // Color data can just be passed direct. const uinT32* data = pixGetData(pix_); OtsuThresholdRectToPix(reinterpret_cast(data), image_bytespp_, image_bytespl_, pix); } else { // Convert 8-bit to IMAGE and then pass its // buffer to the raw interface to complete the conversion. IMAGE temp_image; temp_image.FromPix(pix_); OtsuThresholdRectToPix(temp_image.get_buffer(), image_bytespp_, COMPUTE_IMAGE_XDIM(temp_image.get_xsize(), temp_image.get_bpp()), pix); } } return; } if (image_bytespp_ > 0) { // Threshold grey or color. OtsuThresholdRectToPix(image_data_, image_bytespp_, image_bytespl_, pix); } else { RawRectToPix(pix); } } // Get a clone/copy of the source image rectangle. // The returned Pix must be pixDestroyed. // This function will be used in the future by the page layout analysis, and // the layout analysis that uses it will only be available with Leptonica, // so there is no raw equivalent. Pix* ImageThresholder::GetPixRect() { if (pix_ != NULL) { if (IsFullImage()) { // Just clone the whole thing. return pixClone(pix_); } else { // Crop to the given rectangle. Box* box = boxCreate(rect_left_, rect_top_, rect_width_, rect_height_); Pix* cropped = pixClipRectangle(pix_, box, NULL); boxDestroy(&box); return cropped; } } // The input is raw, so we have to make a copy of it. Pix* raw_pix; RawRectToPix(&raw_pix); return raw_pix; } #endif // Common initialization shared between SetImage methods. void ImageThresholder::Init() { SetRectangle(0, 0, image_width_, image_height_); } // Otsu threshold the rectangle, taking everything except the image buffer // pointer from the class, to the output IMAGE. void ImageThresholder::OtsuThresholdRectToIMAGE(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, IMAGE* image) const { int* thresholds; int* hi_values; OtsuThreshold(imagedata, bytes_per_pixel, bytes_per_line, rect_left_, rect_top_, rect_width_, rect_height_, &thresholds, &hi_values); // Threshold the image to the given IMAGE. ThresholdRectToIMAGE(imagedata, bytes_per_pixel, bytes_per_line, thresholds, hi_values, image); delete [] thresholds; delete [] hi_values; } // Threshold the given grey or color image into the tesseract global // image ready for recognition. Requires thresholds and hi_value // produced by OtsuThreshold in otsuthr.cpp. void ImageThresholder::ThresholdRectToIMAGE(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, const int* thresholds, const int* hi_values, IMAGE* image) const { IMAGELINE line; image->create(rect_width_, rect_height_, 1); line.init(rect_width_); // For each line in the image, fill the IMAGELINE class and put it into the // output IMAGE. Note that Tesseract stores images with the // bottom at y=0 and 0 is black, so we need 2 kinds of inversion. const unsigned char* data = imagedata + rect_top_* bytes_per_line + rect_left_ * bytes_per_pixel; for (int y = rect_height_ - 1 ; y >= 0; --y) { const unsigned char* pix = data; for (int x = 0; x < rect_width_; ++x, pix += bytes_per_pixel) { line.pixels[x] = 1; for (int ch = 0; ch < bytes_per_pixel; ++ch) { if (hi_values[ch] >= 0 && (pix[ch] > thresholds[ch]) == (hi_values[ch] == 0)) { line.pixels[x] = 0; break; } } } image->put_line(0, y, rect_width_, &line, 0); data += bytes_per_line; } } // Cut out the requested rectangle of the binary image to the output IMAGE. void ImageThresholder::CopyBinaryRectRawToIMAGE(IMAGE* image) const { IMAGE rect_image; rect_image.capture(const_cast(image_data_), image_width_, rect_top_ + rect_height_, 1); image->create(rect_width_, rect_height_, 1); // copy_sub_image uses coords starting at the bottom, so the y coord of the // copy is the bottom of the rect_image. copy_sub_image(&rect_image, rect_left_, 0, rect_width_, rect_height_, image, 0, 0, false); } #ifdef HAVE_LIBLEPT // Otsu threshold the rectangle, taking everything except the image buffer // pointer from the class, to the output Pix. void ImageThresholder::OtsuThresholdRectToPix(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, Pix** pix) const { int* thresholds; int* hi_values; OtsuThreshold(imagedata, bytes_per_pixel, bytes_per_line, rect_left_, rect_top_, rect_width_, rect_height_, &thresholds, &hi_values); // Threshold the image to the given IMAGE. ThresholdRectToPix(imagedata, bytes_per_pixel, bytes_per_line, thresholds, hi_values, pix); delete [] thresholds; delete [] hi_values; } // Threshold the rectangle, taking everything except the image buffer pointer // from the class, using thresholds/hi_values to the output IMAGE. void ImageThresholder::ThresholdRectToPix(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, const int* thresholds, const int* hi_values, Pix** pix) const { *pix = pixCreate(rect_width_, rect_height_, 1); uinT32* pixdata = pixGetData(*pix); int wpl = pixGetWpl(*pix); const unsigned char* srcdata = imagedata + rect_top_* bytes_per_line + rect_left_ * bytes_per_pixel; for (int y = 0; y < rect_height_; ++y) { const uinT8* linedata = srcdata; uinT32* pixline = pixdata + y * wpl; for (int x = 0; x < rect_width_; ++x, linedata += bytes_per_pixel) { bool white_result = true; for (int ch = 0; ch < bytes_per_pixel; ++ch) { if (hi_values[ch] >= 0 && (linedata[ch] > thresholds[ch]) == (hi_values[ch] == 0)) { white_result = false; break; } } if (white_result) CLEAR_DATA_BIT(pixline, x); else SET_DATA_BIT(pixline, x); } srcdata += bytes_per_line; } } // Copy the raw image rectangle, taking all data from the class, to the Pix. void ImageThresholder::RawRectToPix(Pix** pix) const { if (image_bytespp_ < 4) { // Go via a tesseract image structure (doesn't copy the data) // and use ToPix. IMAGE image; int bits_per_pixel = image_bytespp_ * 8; if (image_bytespp_ == 0) bits_per_pixel = 1; image.capture(const_cast(image_data_), image_width_, rect_top_ + rect_height_, bits_per_pixel); if (IsFullImage()) { *pix = image.ToPix(); } else { IMAGE rect; rect.create(rect_width_, rect_height_, bits_per_pixel); // The capture chopped the image off at top+height, so copy // the rectangle with y = 0 to get a rectangle of height // starting at the bottom, since copy_sub_image uses bottom-up coords. copy_sub_image(&image, rect_left_, 0, rect_width_, rect_height_, &rect, 0, 0, true); *pix = rect.ToPix(); } } else { *pix = pixCreate(rect_width_, rect_height_, 32); uinT32* data = pixGetData(*pix); int wpl = pixGetWpl(*pix); const uinT8* imagedata = image_data_ + rect_top_ * image_bytespl_ + rect_left_ * image_bytespp_; for (int y = 0; y < rect_height_; ++y) { const uinT8* linedata = imagedata; uinT32* line = data + y * wpl; for (int x = 0; x < rect_width_; ++x) { line[x] = (linedata[0] << 24) | (linedata[1] << 16) | (linedata[2] << 8) | linedata[3]; linedata += 4; } imagedata += image_bytespl_; } } } // Cut out the requested rectangle of the binary image to the output IMAGE. void ImageThresholder::CopyBinaryRectPixToIMAGE(IMAGE* image) const { if (IsFullImage()) { // Just poke it directly into the tess image. image->FromPix(pix_); } else { // Crop to the given rectangle. Box* box = boxCreate(rect_left_, rect_top_, rect_width_, rect_height_); Pix* cropped = pixClipRectangle(pix_, box, NULL); image->FromPix(cropped); pixDestroy(&cropped); boxDestroy(&box); } } #endif } // namespace tesseract.