/****************************************************************************** ** Filename: stopper.c ** Purpose: Stopping criteria for word classifier. ** Author: Dan Johnson ** History: Mon Apr 29 14:56:49 1991, DSJ, Created. ** ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ******************************************************************************/ #include #include #include #include #include "stopper.h" #include "ambigs.h" #include "ccutil.h" #include "const.h" #include "danerror.h" #include "dict.h" #include "efio.h" #include "helpers.h" #include "matchdefs.h" #include "pageres.h" #include "params.h" #include "ratngs.h" #include "scanutils.h" #include "unichar.h" #ifdef _MSC_VER #pragma warning(disable:4244) // Conversion warnings #pragma warning(disable:4800) // int/bool warnings #endif /*---------------------------------------------------------------------------- Private Code ----------------------------------------------------------------------------*/ namespace tesseract { bool Dict::AcceptableChoice(const WERD_CHOICE& best_choice, XHeightConsistencyEnum xheight_consistency) { float CertaintyThreshold = stopper_nondict_certainty_base; int WordSize; if (stopper_no_acceptable_choices) return false; if (best_choice.length() == 0) return false; bool no_dang_ambigs = !best_choice.dangerous_ambig_found(); bool is_valid_word = valid_word_permuter(best_choice.permuter(), false); bool is_case_ok = case_ok(best_choice, getUnicharset()); if (stopper_debug_level >= 1) { const char *xht = "UNKNOWN"; switch (xheight_consistency) { case XH_GOOD: xht = "NORMAL"; break; case XH_SUBNORMAL: xht = "SUBNORMAL"; break; case XH_INCONSISTENT: xht = "INCONSISTENT"; break; default: xht = "UNKNOWN"; } tprintf("\nStopper: %s (word=%c, case=%c, xht_ok=%s=[%g,%g])\n", best_choice.unichar_string().string(), (is_valid_word ? 'y' : 'n'), (is_case_ok ? 'y' : 'n'), xht, best_choice.min_x_height(), best_choice.max_x_height()); } // Do not accept invalid words in PASS1. if (reject_offset_ <= 0.0f && !is_valid_word) return false; if (is_valid_word && is_case_ok) { WordSize = LengthOfShortestAlphaRun(best_choice); WordSize -= stopper_smallword_size; if (WordSize < 0) WordSize = 0; CertaintyThreshold += WordSize * stopper_certainty_per_char; } if (stopper_debug_level >= 1) tprintf("Stopper: Rating = %4.1f, Certainty = %4.1f, Threshold = %4.1f\n", best_choice.rating(), best_choice.certainty(), CertaintyThreshold); if (no_dang_ambigs && best_choice.certainty() > CertaintyThreshold && xheight_consistency < XH_INCONSISTENT && UniformCertainties(best_choice)) { return true; } else { if (stopper_debug_level >= 1) { tprintf("AcceptableChoice() returned false" " (no_dang_ambig:%d cert:%.4g thresh:%g uniform:%d)\n", no_dang_ambigs, best_choice.certainty(), CertaintyThreshold, UniformCertainties(best_choice)); } return false; } } bool Dict::AcceptableResult(WERD_RES *word) const { if (word->best_choice == NULL) return false; float CertaintyThreshold = stopper_nondict_certainty_base - reject_offset_; int WordSize; if (stopper_debug_level >= 1) { tprintf("\nRejecter: %s (word=%c, case=%c, unambig=%c, multiple=%c)\n", word->best_choice->debug_string().string(), (valid_word(*word->best_choice) ? 'y' : 'n'), (case_ok(*word->best_choice, getUnicharset()) ? 'y' : 'n'), word->best_choice->dangerous_ambig_found() ? 'n' : 'y', word->best_choices.singleton() ? 'n' : 'y'); } if (word->best_choice->length() == 0 || !word->best_choices.singleton()) return false; if (valid_word(*word->best_choice) && case_ok(*word->best_choice, getUnicharset())) { WordSize = LengthOfShortestAlphaRun(*word->best_choice); WordSize -= stopper_smallword_size; if (WordSize < 0) WordSize = 0; CertaintyThreshold += WordSize * stopper_certainty_per_char; } if (stopper_debug_level >= 1) tprintf("Rejecter: Certainty = %4.1f, Threshold = %4.1f ", word->best_choice->certainty(), CertaintyThreshold); if (word->best_choice->certainty() > CertaintyThreshold && !stopper_no_acceptable_choices) { if (stopper_debug_level >= 1) tprintf("ACCEPTED\n"); return true; } else { if (stopper_debug_level >= 1) tprintf("REJECTED\n"); return false; } } bool Dict::NoDangerousAmbig(WERD_CHOICE *best_choice, DANGERR *fixpt, bool fix_replaceable, MATRIX *ratings) { if (stopper_debug_level > 2) { tprintf("\nRunning NoDangerousAmbig() for %s\n", best_choice->debug_string().string()); } // Construct BLOB_CHOICE_LIST_VECTOR with ambiguities // for each unichar id in BestChoice. BLOB_CHOICE_LIST_VECTOR ambig_blob_choices; int i; bool ambigs_found = false; // For each position in best_choice: // -- choose AMBIG_SPEC_LIST that corresponds to unichar_id at best_choice[i] // -- initialize wrong_ngram with a single unichar_id at best_choice[i] // -- look for ambiguities corresponding to wrong_ngram in the list while // adding the following unichar_ids from best_choice to wrong_ngram // // Repeat the above procedure twice: first time look through // ambigs to be replaced and replace all the ambiguities found; // second time look through dangerous ambiguities and construct // ambig_blob_choices with fake a blob choice for each ambiguity // and pass them to dawg_permute_and_select() to search for // ambiguous words in the dictionaries. // // Note that during the execution of the for loop (on the first pass) // if replacements are made the length of best_choice might change. for (int pass = 0; pass < (fix_replaceable ? 2 : 1); ++pass) { bool replace = (fix_replaceable && pass == 0); const UnicharAmbigsVector &table = replace ? getUnicharAmbigs().replace_ambigs() : getUnicharAmbigs().dang_ambigs(); if (!replace) { // Initialize ambig_blob_choices with lists containing a single // unichar id for the correspoding position in best_choice. // best_choice consisting from only the original letters will // have a rating of 0.0. for (i = 0; i < best_choice->length(); ++i) { BLOB_CHOICE_LIST *lst = new BLOB_CHOICE_LIST(); BLOB_CHOICE_IT lst_it(lst); // TODO(rays/antonova) Put real xheights and y shifts here. lst_it.add_to_end(new BLOB_CHOICE(best_choice->unichar_id(i), 0.0, 0.0, -1, 0, 1, 0, BCC_AMBIG)); ambig_blob_choices.push_back(lst); } } UNICHAR_ID wrong_ngram[MAX_AMBIG_SIZE + 1]; int wrong_ngram_index; int next_index; int blob_index = 0; for (i = 0; i < best_choice->length(); blob_index += best_choice->state(i), ++i) { UNICHAR_ID curr_unichar_id = best_choice->unichar_id(i); if (stopper_debug_level > 2) { tprintf("Looking for %s ngrams starting with %s:\n", replace ? "replaceable" : "ambiguous", getUnicharset().debug_str(curr_unichar_id).string()); } int num_wrong_blobs = best_choice->state(i); wrong_ngram_index = 0; wrong_ngram[wrong_ngram_index] = curr_unichar_id; if (curr_unichar_id == INVALID_UNICHAR_ID || curr_unichar_id >= table.size() || table[curr_unichar_id] == NULL) { continue; // there is no ambig spec for this unichar id } AmbigSpec_IT spec_it(table[curr_unichar_id]); for (spec_it.mark_cycle_pt(); !spec_it.cycled_list();) { const AmbigSpec *ambig_spec = spec_it.data(); wrong_ngram[wrong_ngram_index+1] = INVALID_UNICHAR_ID; int compare = UnicharIdArrayUtils::compare(wrong_ngram, ambig_spec->wrong_ngram); if (stopper_debug_level > 2) { tprintf("candidate ngram: "); UnicharIdArrayUtils::print(wrong_ngram, getUnicharset()); tprintf("current ngram from spec: "); UnicharIdArrayUtils::print(ambig_spec->wrong_ngram, getUnicharset()); tprintf("comparison result: %d\n", compare); } if (compare == 0) { // Record the place where we found an ambiguity. if (fixpt != NULL) { UNICHAR_ID leftmost_id = ambig_spec->correct_fragments[0]; fixpt->push_back(DANGERR_INFO( blob_index, blob_index + num_wrong_blobs, replace, getUnicharset().get_isngram(ambig_spec->correct_ngram_id), leftmost_id)); if (stopper_debug_level > 1) { tprintf("fixpt+=(%d %d %d %d %s)\n", blob_index, blob_index + num_wrong_blobs, false, getUnicharset().get_isngram( ambig_spec->correct_ngram_id), getUnicharset().id_to_unichar(leftmost_id)); } } if (replace) { if (stopper_debug_level > 2) { tprintf("replace ambiguity with %s : ", getUnicharset().id_to_unichar( ambig_spec->correct_ngram_id)); UnicharIdArrayUtils::print( ambig_spec->correct_fragments, getUnicharset()); } ReplaceAmbig(i, ambig_spec->wrong_ngram_size, ambig_spec->correct_ngram_id, best_choice, ratings); } else if (i > 0 || ambig_spec->type != CASE_AMBIG) { // We found dang ambig - update ambig_blob_choices. if (stopper_debug_level > 2) { tprintf("found ambiguity: "); UnicharIdArrayUtils::print( ambig_spec->correct_fragments, getUnicharset()); } ambigs_found = true; for (int tmp_index = 0; tmp_index <= wrong_ngram_index; ++tmp_index) { // Add a blob choice for the corresponding fragment of the // ambiguity. These fake blob choices are initialized with // negative ratings (which are not possible for real blob // choices), so that dawg_permute_and_select() considers any // word not consisting of only the original letters a better // choice and stops searching for alternatives once such a // choice is found. BLOB_CHOICE_IT bc_it(ambig_blob_choices[i+tmp_index]); bc_it.add_to_end(new BLOB_CHOICE( ambig_spec->correct_fragments[tmp_index], -1.0, 0.0, -1, 0, 1, 0, BCC_AMBIG)); } } spec_it.forward(); } else if (compare == -1) { if (wrong_ngram_index+1 < ambig_spec->wrong_ngram_size && ((next_index = wrong_ngram_index+1+i) < best_choice->length())) { // Add the next unichar id to wrong_ngram and keep looking for // more ambigs starting with curr_unichar_id in AMBIG_SPEC_LIST. wrong_ngram[++wrong_ngram_index] = best_choice->unichar_id(next_index); num_wrong_blobs += best_choice->state(next_index); } else { break; // no more matching ambigs in this AMBIG_SPEC_LIST } } else { spec_it.forward(); } } // end searching AmbigSpec_LIST } // end searching best_choice } // end searching replace and dangerous ambigs // If any ambiguities were found permute the constructed ambig_blob_choices // to see if an alternative dictionary word can be found. if (ambigs_found) { if (stopper_debug_level > 2) { tprintf("\nResulting ambig_blob_choices:\n"); for (i = 0; i < ambig_blob_choices.length(); ++i) { print_ratings_list("", ambig_blob_choices.get(i), getUnicharset()); tprintf("\n"); } } WERD_CHOICE *alt_word = dawg_permute_and_select(ambig_blob_choices, 0.0); ambigs_found = (alt_word->rating() < 0.0); if (ambigs_found) { if (stopper_debug_level >= 1) { tprintf ("Stopper: Possible ambiguous word = %s\n", alt_word->debug_string().string()); } if (fixpt != NULL) { // Note: Currently character choices combined from fragments can only // be generated by NoDangrousAmbigs(). This code should be updated if // the capability to produce classifications combined from character // fragments is added to other functions. int orig_i = 0; for (i = 0; i < alt_word->length(); ++i) { const UNICHARSET &uchset = getUnicharset(); bool replacement_is_ngram = uchset.get_isngram(alt_word->unichar_id(i)); UNICHAR_ID leftmost_id = alt_word->unichar_id(i); if (replacement_is_ngram) { // we have to extract the leftmost unichar from the ngram. const char *str = uchset.id_to_unichar(leftmost_id); int step = uchset.step(str); if (step) leftmost_id = uchset.unichar_to_id(str, step); } int end_i = orig_i + alt_word->state(i); if (alt_word->state(i) > 1 || (orig_i + 1 == end_i && replacement_is_ngram)) { // Compute proper blob indices. int blob_start = 0; for (int j = 0; j < orig_i; ++j) blob_start += best_choice->state(j); int blob_end = blob_start; for (int j = orig_i; j < end_i; ++j) blob_end += best_choice->state(j); fixpt->push_back(DANGERR_INFO(blob_start, blob_end, true, replacement_is_ngram, leftmost_id)); if (stopper_debug_level > 1) { tprintf("fixpt->dangerous+=(%d %d %d %d %s)\n", orig_i, end_i, true, replacement_is_ngram, uchset.id_to_unichar(leftmost_id)); } } orig_i += alt_word->state(i); } } } delete alt_word; } if (output_ambig_words_file_ != NULL) { fprintf(output_ambig_words_file_, "\n"); } ambig_blob_choices.delete_data_pointers(); return !ambigs_found; } void Dict::EndDangerousAmbigs() {} void Dict::SettupStopperPass1() { reject_offset_ = 0.0; } void Dict::SettupStopperPass2() { reject_offset_ = stopper_phase2_certainty_rejection_offset; } void Dict::ReplaceAmbig(int wrong_ngram_begin_index, int wrong_ngram_size, UNICHAR_ID correct_ngram_id, WERD_CHOICE *werd_choice, MATRIX *ratings) { int num_blobs_to_replace = 0; int begin_blob_index = 0; int i; // Rating and certainty for the new BLOB_CHOICE are derived from the // replaced choices. float new_rating = 0.0f; float new_certainty = 0.0f; BLOB_CHOICE* old_choice = NULL; for (i = 0; i < wrong_ngram_begin_index + wrong_ngram_size; ++i) { if (i >= wrong_ngram_begin_index) { int num_blobs = werd_choice->state(i); int col = begin_blob_index + num_blobs_to_replace; int row = col + num_blobs - 1; BLOB_CHOICE_LIST* choices = ratings->get(col, row); ASSERT_HOST(choices != NULL); old_choice = FindMatchingChoice(werd_choice->unichar_id(i), choices); ASSERT_HOST(old_choice != NULL); new_rating += old_choice->rating(); new_certainty += old_choice->certainty(); num_blobs_to_replace += num_blobs; } else { begin_blob_index += werd_choice->state(i); } } new_certainty /= wrong_ngram_size; // If there is no entry in the ratings matrix, add it. MATRIX_COORD coord(begin_blob_index, begin_blob_index + num_blobs_to_replace - 1); if (!coord.Valid(*ratings)) { ratings->IncreaseBandSize(coord.row - coord.col + 1); } if (ratings->get(coord.col, coord.row) == NULL) ratings->put(coord.col, coord.row, new BLOB_CHOICE_LIST); BLOB_CHOICE_LIST* new_choices = ratings->get(coord.col, coord.row); BLOB_CHOICE* choice = FindMatchingChoice(correct_ngram_id, new_choices); if (choice != NULL) { // Already there. Upgrade if new rating better. if (new_rating < choice->rating()) choice->set_rating(new_rating); if (new_certainty < choice->certainty()) choice->set_certainty(new_certainty); // DO NOT SORT!! It will mess up the iterator in LanguageModel::UpdateState. } else { // Need a new choice with the correct_ngram_id. choice = new BLOB_CHOICE(*old_choice); choice->set_unichar_id(correct_ngram_id); choice->set_rating(new_rating); choice->set_certainty(new_certainty); choice->set_classifier(BCC_AMBIG); choice->set_matrix_cell(coord.col, coord.row); BLOB_CHOICE_IT it (new_choices); it.add_to_end(choice); } // Remove current unichar from werd_choice. On the last iteration // set the correct replacement unichar instead of removing a unichar. for (int replaced_count = 0; replaced_count < wrong_ngram_size; ++replaced_count) { if (replaced_count + 1 == wrong_ngram_size) { werd_choice->set_blob_choice(wrong_ngram_begin_index, num_blobs_to_replace, choice); } else { werd_choice->remove_unichar_id(wrong_ngram_begin_index + 1); } } if (stopper_debug_level >= 1) { werd_choice->print("ReplaceAmbig() "); tprintf("Modified blob_choices: "); print_ratings_list("\n", new_choices, getUnicharset()); } } int Dict::LengthOfShortestAlphaRun(const WERD_CHOICE &WordChoice) const { int shortest = MAX_INT32; int curr_len = 0; for (int w = 0; w < WordChoice.length(); ++w) { if (getUnicharset().get_isalpha(WordChoice.unichar_id(w))) { curr_len++; } else if (curr_len > 0) { if (curr_len < shortest) shortest = curr_len; curr_len = 0; } } if (curr_len > 0 && curr_len < shortest) { shortest = curr_len; } else if (shortest == MAX_INT32) { shortest = 0; } return shortest; } int Dict::UniformCertainties(const WERD_CHOICE& word) { float Certainty; float WorstCertainty = MAX_FLOAT32; float CertaintyThreshold; FLOAT64 TotalCertainty; FLOAT64 TotalCertaintySquared; FLOAT64 Variance; FLOAT32 Mean, StdDev; int word_length = word.length(); if (word_length < 3) return true; TotalCertainty = TotalCertaintySquared = 0.0; for (int i = 0; i < word_length; ++i) { Certainty = word.certainty(i); TotalCertainty += Certainty; TotalCertaintySquared += Certainty * Certainty; if (Certainty < WorstCertainty) WorstCertainty = Certainty; } // Subtract off worst certainty from statistics. word_length--; TotalCertainty -= WorstCertainty; TotalCertaintySquared -= WorstCertainty * WorstCertainty; Mean = TotalCertainty / word_length; Variance = ((word_length * TotalCertaintySquared - TotalCertainty * TotalCertainty) / (word_length * (word_length - 1))); if (Variance < 0.0) Variance = 0.0; StdDev = sqrt(Variance); CertaintyThreshold = Mean - stopper_allowable_character_badness * StdDev; if (CertaintyThreshold > stopper_nondict_certainty_base) CertaintyThreshold = stopper_nondict_certainty_base; if (word.certainty() < CertaintyThreshold) { if (stopper_debug_level >= 1) tprintf("Stopper: Non-uniform certainty = %4.1f" " (m=%4.1f, s=%4.1f, t=%4.1f)\n", word.certainty(), Mean, StdDev, CertaintyThreshold); return false; } else { return true; } } } // namespace tesseract