/********************************************************************** * File: linlsq.cpp (Formerly llsq.c) * Description: Linear Least squares fitting code. * Author: Ray Smith * Created: Thu Sep 12 08:44:51 BST 1991 * * (C) Copyright 1991, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #include #include #include "errcode.h" #include "linlsq.h" const ERRCODE EMPTY_LLSQ = "Can't delete from an empty LLSQ"; /********************************************************************** * LLSQ::clear * * Function to initialize a LLSQ. **********************************************************************/ void LLSQ::clear() { // initialize total_weight = 0.0; // no elements sigx = 0.0; // update accumulators sigy = 0.0; sigxx = 0.0; sigxy = 0.0; sigyy = 0.0; } /********************************************************************** * LLSQ::add * * Add an element to the accumulator. **********************************************************************/ void LLSQ::add(double x, double y) { // add an element total_weight++; // count elements sigx += x; // update accumulators sigy += y; sigxx += x * x; sigxy += x * y; sigyy += y * y; } // Adds an element with a specified weight. void LLSQ::add(double x, double y, double weight) { total_weight += weight; sigx += x * weight; // update accumulators sigy += y * weight; sigxx += x * x * weight; sigxy += x * y * weight; sigyy += y * y * weight; } // Adds a whole LLSQ. void LLSQ::add(const LLSQ& other) { total_weight += other.total_weight; sigx += other.sigx; // update accumulators sigy += other.sigy; sigxx += other.sigxx; sigxy += other.sigxy; sigyy += other.sigyy; } /********************************************************************** * LLSQ::remove * * Delete an element from the acculuator. **********************************************************************/ void LLSQ::remove(double x, double y) { // delete an element if (total_weight <= 0.0) // illegal EMPTY_LLSQ.error("LLSQ::remove", ABORT, NULL); total_weight--; // count elements sigx -= x; // update accumulators sigy -= y; sigxx -= x * x; sigxy -= x * y; sigyy -= y * y; } /********************************************************************** * LLSQ::m * * Return the gradient of the line fit. **********************************************************************/ double LLSQ::m() const { // get gradient double covar = covariance(); double x_var = x_variance(); if (x_var != 0.0) return covar / x_var; else return 0.0; // too little } /********************************************************************** * LLSQ::c * * Return the constant of the line fit. **********************************************************************/ double LLSQ::c(double m) const { // get constant if (total_weight > 0.0) return (sigy - m * sigx) / total_weight; else return 0; // too little } /********************************************************************** * LLSQ::rms * * Return the rms error of the fit. **********************************************************************/ double LLSQ::rms(double m, double c) const { // get error double error; // total error if (total_weight > 0) { error = sigyy + m * (m * sigxx + 2 * (c * sigx - sigxy)) + c * (total_weight * c - 2 * sigy); if (error >= 0) error = sqrt(error / total_weight); // sqrt of mean else error = 0; } else { error = 0; // too little } return error; } /********************************************************************** * LLSQ::pearson * * Return the pearson product moment correlation coefficient. **********************************************************************/ double LLSQ::pearson() const { // get correlation double r = 0.0; // Correlation is 0 if insufficent data. double covar = covariance(); if (covar != 0.0) { double var_product = x_variance() * y_variance(); if (var_product > 0.0) r = covar / sqrt(var_product); } return r; } // Returns the x,y means as an FCOORD. FCOORD LLSQ::mean_point() const { if (total_weight > 0.0) { return FCOORD(sigx / total_weight, sigy / total_weight); } else { return FCOORD(0.0f, 0.0f); } } // Returns the sqrt of the mean squared error measured perpendicular from the // line through mean_point() in the direction dir. // // Derivation: // Lemma: Let v and x_i (i=1..N) be a k-dimensional vectors (1xk matrices). // Let % be dot product and ' be transpose. Note that: // Sum[i=1..N] (v % x_i)^2 // = v * [x_1' x_2' ... x_N'] * [x_1' x_2' .. x_N']' * v' // If x_i have average 0 we have: // = v * (N * COVARIANCE_MATRIX(X)) * v' // Expanded for the case that k = 2, where we treat the dimensions // as x_i and y_i, this is: // = v * (N * [VAR(X), COV(X,Y); COV(X,Y) VAR(Y)]) * v' // Now, we are trying to calculate the mean squared error, where v is // perpendicular to our line of interest: // Mean squared error // = E [ (v % (x_i - x_avg))) ^2 ] // = Sum (v % (x_i - x_avg))^2 / N // = v * N * [VAR(X) COV(X,Y); COV(X,Y) VAR(Y)] / N * v' // = v * [VAR(X) COV(X,Y); COV(X,Y) VAR(Y)] * v' // = code below double LLSQ::rms_orth(const FCOORD &dir) const { FCOORD v = !dir; v.normalise(); return sqrt(v.x() * v.x() * x_variance() + 2 * v.x() * v.y() * covariance() + v.y() * v.y() * y_variance()); } // Returns the direction of the fitted line as a unit vector, using the // least mean squared perpendicular distance. The line runs through the // mean_point, i.e. a point p on the line is given by: // p = mean_point() + lambda * vector_fit() for some real number lambda. // Note that the result (0<=x<=1, -1<=y<=-1) is directionally ambiguous // and may be negated without changing its meaning. // Fitting a line m + ๐œ†v to a set of N points Pi = (xi, yi), where // m is the mean point (๐, ๐‚) and // v is the direction vector (cos๐œƒ, sin๐œƒ) // The perpendicular distance of each Pi from the line is: // (Pi - m) x v, where x is the scalar cross product. // Total squared error is thus: // E = โˆ‘((xi - ๐)sin๐œƒ - (yi - ๐‚)cos๐œƒ)ยฒ // = โˆ‘(xi - ๐)ยฒsinยฒ๐œƒ - 2โˆ‘(xi - ๐)(yi - ๐‚)sin๐œƒ cos๐œƒ + โˆ‘(yi - ๐‚)ยฒcosยฒ๐œƒ // = NVar(xi)sinยฒ๐œƒ - 2NCovar(xi, yi)sin๐œƒ cos๐œƒ + NVar(yi)cosยฒ๐œƒ (Eq 1) // where Var(xi) is the variance of xi, // and Covar(xi, yi) is the covariance of xi, yi. // Taking the derivative wrt ๐œƒ and setting to 0 to obtain the min/max: // 0 = 2NVar(xi)sin๐œƒ cos๐œƒ -2NCovar(xi, yi)(cosยฒ๐œƒ - sinยฒ๐œƒ) -2NVar(yi)sin๐œƒ cos๐œƒ // => Covar(xi, yi)(cosยฒ๐œƒ - sinยฒ๐œƒ) = (Var(xi) - Var(yi))sin๐œƒ cos๐œƒ // Using double angles: // 2Covar(xi, yi)cos2๐œƒ = (Var(xi) - Var(yi))sin2๐œƒ (Eq 2) // So ๐œƒ = 0.5 atan2(2Covar(xi, yi), Var(xi) - Var(yi)) (Eq 3) // Because it involves 2๐œƒ , Eq 2 has 2 solutions 90 degrees apart, but which // is the min and which is the max? From Eq1: // E/N = Var(xi)sinยฒ๐œƒ - 2Covar(xi, yi)sin๐œƒ cos๐œƒ + Var(yi)cosยฒ๐œƒ // and 90 degrees away, using sin/cos equivalences: // E'/N = Var(xi)cosยฒ๐œƒ + 2Covar(xi, yi)sin๐œƒ cos๐œƒ + Var(yi)sinยฒ๐œƒ // The second error is smaller (making it the minimum) iff // E'/N < E/N ie: // (Var(xi) - Var(yi))(cosยฒ๐œƒ - sinยฒ๐œƒ) < -4Covar(xi, yi)sin๐œƒ cos๐œƒ // Using double angles: // (Var(xi) - Var(yi))cos2๐œƒ < -2Covar(xi, yi)sin2๐œƒ (InEq 1) // But atan2(2Covar(xi, yi), Var(xi) - Var(yi)) picks 2๐œƒ such that: // sgn(cos2๐œƒ) = sgn(Var(xi) - Var(yi)) and sgn(sin2๐œƒ) = sgn(Covar(xi, yi)) // so InEq1 can *never* be true, making the atan2 result *always* the min! // In the degenerate case, where Covar(xi, yi) = 0 AND Var(xi) = Var(yi), // the 2 solutions have equal error and the inequality is still false. // Therefore the solution really is as trivial as Eq 3. // This is equivalent to returning the Principal Component in PCA, or the // eigenvector corresponding to the largest eigenvalue in the covariance // matrix. However, atan2 is much simpler! The one reference I found that // uses this formula is http://web.mit.edu/18.06/www/Essays/tlsfit.pdf but // that is still a much more complex derivation. It seems Pearson had already // found this simple solution in 1901. // http://books.google.com/books?id=WXwvAQAAIAAJ&pg=PA559 FCOORD LLSQ::vector_fit() const { double x_var = x_variance(); double y_var = y_variance(); double covar = covariance(); double theta = 0.5 * atan2(2.0 * covar, x_var - y_var); FCOORD result(cos(theta), sin(theta)); return result; }