/////////////////////////////////////////////////////////////////////// // File: fullyconnected.cpp // Description: Simple feed-forward layer with various non-linearities. // Author: Ray Smith // Created: Wed Feb 26 14:49:15 PST 2014 // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #include "fullyconnected.h" #ifdef _OPENMP #include #endif #include #include #include "functions.h" #include "networkscratch.h" // Number of threads to use for parallel calculation of Forward and Backward. #ifdef _OPENMP const int kNumThreads = 4; #else const int kNumThreads = 1; #endif namespace tesseract { FullyConnected::FullyConnected(const STRING& name, int ni, int no, NetworkType type) : Network(type, name, ni, no), external_source_(NULL), int_mode_(false) { } FullyConnected::~FullyConnected() { } // Returns the shape output from the network given an input shape (which may // be partially unknown ie zero). StaticShape FullyConnected::OutputShape(const StaticShape& input_shape) const { LossType loss_type = LT_NONE; if (type_ == NT_SOFTMAX) loss_type = LT_CTC; else if (type_ == NT_SOFTMAX_NO_CTC) loss_type = LT_SOFTMAX; else if (type_ == NT_LOGISTIC) loss_type = LT_LOGISTIC; StaticShape result(input_shape); result.set_depth(no_); result.set_loss_type(loss_type); return result; } // Suspends/Enables training by setting the training_ flag. void FullyConnected::SetEnableTraining(TrainingState state) { if (state == TS_RE_ENABLE) { // Enable only from temp disabled. if (training_ == TS_TEMP_DISABLE) training_ = TS_ENABLED; } else if (state == TS_TEMP_DISABLE) { // Temp disable only from enabled. if (training_ == TS_ENABLED) training_ = state; } else { if (state == TS_ENABLED && training_ != TS_ENABLED) weights_.InitBackward(); training_ = state; } } // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. int FullyConnected::InitWeights(float range, TRand* randomizer) { Network::SetRandomizer(randomizer); num_weights_ = weights_.InitWeightsFloat(no_, ni_ + 1, TestFlag(NF_ADA_GRAD), range, randomizer); return num_weights_; } // Converts a float network to an int network. void FullyConnected::ConvertToInt() { weights_.ConvertToInt(); } // Provides debug output on the weights. void FullyConnected::DebugWeights() { weights_.Debug2D(name_.string()); } // Writes to the given file. Returns false in case of error. bool FullyConnected::Serialize(TFile* fp) const { if (!Network::Serialize(fp)) return false; if (!weights_.Serialize(IsTraining(), fp)) return false; return true; } // Reads from the given file. Returns false in case of error. bool FullyConnected::DeSerialize(TFile* fp) { return weights_.DeSerialize(IsTraining(), fp); } // Runs forward propagation of activations on the input line. // See NetworkCpp for a detailed discussion of the arguments. void FullyConnected::Forward(bool debug, const NetworkIO& input, const TransposedArray* input_transpose, NetworkScratch* scratch, NetworkIO* output) { int width = input.Width(); if (type_ == NT_SOFTMAX) output->ResizeFloat(input, no_); else output->Resize(input, no_); SetupForward(input, input_transpose); GenericVector temp_lines; temp_lines.init_to_size(kNumThreads, NetworkScratch::FloatVec()); GenericVector curr_input; curr_input.init_to_size(kNumThreads, NetworkScratch::FloatVec()); for (int i = 0; i < kNumThreads; ++i) { temp_lines[i].Init(no_, scratch); curr_input[i].Init(ni_, scratch); } #ifdef _OPENMP #pragma omp parallel for num_threads(kNumThreads) for (int t = 0; t < width; ++t) { // Thread-local pointer to temporary storage. int thread_id = omp_get_thread_num(); #else for (int t = 0; t < width; ++t) { // Thread-local pointer to temporary storage. int thread_id = 0; #endif double* temp_line = temp_lines[thread_id]; const double* d_input = NULL; const inT8* i_input = NULL; if (input.int_mode()) { i_input = input.i(t); } else { input.ReadTimeStep(t, curr_input[thread_id]); d_input = curr_input[thread_id]; } ForwardTimeStep(d_input, i_input, t, temp_line); output->WriteTimeStep(t, temp_line); if (IsTraining() && type_ != NT_SOFTMAX) { acts_.CopyTimeStepFrom(t, *output, t); } } // Zero all the elements that are in the padding around images that allows // multiple different-sized images to exist in a single array. // acts_ is only used if this is not a softmax op. if (IsTraining() && type_ != NT_SOFTMAX) { acts_.ZeroInvalidElements(); } output->ZeroInvalidElements(); #if DEBUG_DETAIL > 0 tprintf("F Output:%s\n", name_.string()); output->Print(10); #endif if (debug) DisplayForward(*output); } // Components of Forward so FullyConnected can be reused inside LSTM. void FullyConnected::SetupForward(const NetworkIO& input, const TransposedArray* input_transpose) { // Softmax output is always float, so save the input type. int_mode_ = input.int_mode(); if (IsTraining()) { acts_.Resize(input, no_); // Source_ is a transposed copy of input. It isn't needed if provided. external_source_ = input_transpose; if (external_source_ == NULL) source_t_.ResizeNoInit(ni_, input.Width()); } } void FullyConnected::ForwardTimeStep(const double* d_input, const inT8* i_input, int t, double* output_line) { // input is copied to source_ line-by-line for cache coherency. if (IsTraining() && external_source_ == NULL && d_input != NULL) source_t_.WriteStrided(t, d_input); if (d_input != NULL) weights_.MatrixDotVector(d_input, output_line); else weights_.MatrixDotVector(i_input, output_line); if (type_ == NT_TANH) { FuncInplace(no_, output_line); } else if (type_ == NT_LOGISTIC) { FuncInplace(no_, output_line); } else if (type_ == NT_POSCLIP) { FuncInplace(no_, output_line); } else if (type_ == NT_SYMCLIP) { FuncInplace(no_, output_line); } else if (type_ == NT_RELU) { FuncInplace(no_, output_line); } else if (type_ == NT_SOFTMAX || type_ == NT_SOFTMAX_NO_CTC) { SoftmaxInPlace(no_, output_line); } else if (type_ != NT_LINEAR) { ASSERT_HOST("Invalid fully-connected type!" == NULL); } } // Runs backward propagation of errors on the deltas line. // See NetworkCpp for a detailed discussion of the arguments. bool FullyConnected::Backward(bool debug, const NetworkIO& fwd_deltas, NetworkScratch* scratch, NetworkIO* back_deltas) { if (debug) DisplayBackward(fwd_deltas); back_deltas->Resize(fwd_deltas, ni_); GenericVector errors; errors.init_to_size(kNumThreads, NetworkScratch::FloatVec()); for (int i = 0; i < kNumThreads; ++i) errors[i].Init(no_, scratch); GenericVector temp_backprops; if (needs_to_backprop_) { temp_backprops.init_to_size(kNumThreads, NetworkScratch::FloatVec()); for (int i = 0; i < kNumThreads; ++i) temp_backprops[i].Init(ni_, scratch); } int width = fwd_deltas.Width(); NetworkScratch::GradientStore errors_t; errors_t.Init(no_, width, scratch); #ifdef _OPENMP #pragma omp parallel for num_threads(kNumThreads) for (int t = 0; t < width; ++t) { int thread_id = omp_get_thread_num(); #else for (int t = 0; t < width; ++t) { int thread_id = 0; #endif double* backprop = NULL; if (needs_to_backprop_) backprop = temp_backprops[thread_id]; double* curr_errors = errors[thread_id]; BackwardTimeStep(fwd_deltas, t, curr_errors, errors_t.get(), backprop); if (backprop != NULL) { back_deltas->WriteTimeStep(t, backprop); } } FinishBackward(*errors_t.get()); if (needs_to_backprop_) { back_deltas->ZeroInvalidElements(); back_deltas->CopyWithNormalization(*back_deltas, fwd_deltas); #if DEBUG_DETAIL > 0 tprintf("F Backprop:%s\n", name_.string()); back_deltas->Print(10); #endif return true; } return false; // No point going further back. } void FullyConnected::BackwardTimeStep(const NetworkIO& fwd_deltas, int t, double* curr_errors, TransposedArray* errors_t, double* backprop) { if (type_ == NT_TANH) acts_.FuncMultiply(fwd_deltas, t, curr_errors); else if (type_ == NT_LOGISTIC) acts_.FuncMultiply(fwd_deltas, t, curr_errors); else if (type_ == NT_POSCLIP) acts_.FuncMultiply(fwd_deltas, t, curr_errors); else if (type_ == NT_SYMCLIP) acts_.FuncMultiply(fwd_deltas, t, curr_errors); else if (type_ == NT_RELU) acts_.FuncMultiply(fwd_deltas, t, curr_errors); else if (type_ == NT_SOFTMAX || type_ == NT_SOFTMAX_NO_CTC || type_ == NT_LINEAR) fwd_deltas.ReadTimeStep(t, curr_errors); // fwd_deltas are the errors. else ASSERT_HOST("Invalid fully-connected type!" == NULL); // Generate backprop only if needed by the lower layer. if (backprop != NULL) weights_.VectorDotMatrix(curr_errors, backprop); errors_t->WriteStrided(t, curr_errors); } void FullyConnected::FinishBackward(const TransposedArray& errors_t) { if (external_source_ == NULL) weights_.SumOuterTransposed(errors_t, source_t_, true); else weights_.SumOuterTransposed(errors_t, *external_source_, true); } // Updates the weights using the given learning rate and momentum. // num_samples is the quotient to be used in the adagrad computation iff // use_ada_grad_ is true. void FullyConnected::Update(float learning_rate, float momentum, int num_samples) { weights_.Update(learning_rate, momentum, num_samples); } // Sums the products of weight updates in *this and other, splitting into // positive (same direction) in *same and negative (different direction) in // *changed. void FullyConnected::CountAlternators(const Network& other, double* same, double* changed) const { ASSERT_HOST(other.type() == type_); const FullyConnected* fc = static_cast(&other); weights_.CountAlternators(fc->weights_, same, changed); } } // namespace tesseract.