/////////////////////////////////////////////////////////////////////// // File: input.h // Description: Input layer class for neural network implementations. // Author: Ray Smith // Created: Thu Mar 13 08:56:26 PDT 2014 // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_LSTM_INPUT_H_ #define TESSERACT_LSTM_INPUT_H_ #include "network.h" class ScrollView; namespace tesseract { class Input : public Network { public: Input(const STRING& name, int ni, int no); Input(const STRING& name, const StaticShape& shape); virtual ~Input(); virtual STRING spec() const { STRING spec; spec.add_str_int("", shape_.batch()); spec.add_str_int(",", shape_.height()); spec.add_str_int(",", shape_.width()); spec.add_str_int(",", shape_.depth()); return spec; } // Returns the required shape input to the network. virtual StaticShape InputShape() const { return shape_; } // Returns the shape output from the network given an input shape (which may // be partially unknown ie zero). virtual StaticShape OutputShape(const StaticShape& input_shape) const { return shape_; } // Writes to the given file. Returns false in case of error. // Should be overridden by subclasses, but called by their Serialize. virtual bool Serialize(TFile* fp) const; // Reads from the given file. Returns false in case of error. virtual bool DeSerialize(TFile* fp); // Returns an integer reduction factor that the network applies to the // time sequence. Assumes that any 2-d is already eliminated. Used for // scaling bounding boxes of truth data. // WARNING: if GlobalMinimax is used to vary the scale, this will return // the last used scale factor. Call it before any forward, and it will return // the minimum scale factor of the paths through the GlobalMinimax. virtual int XScaleFactor() const; // Provides the (minimum) x scale factor to the network (of interest only to // input units) so they can determine how to scale bounding boxes. virtual void CacheXScaleFactor(int factor); // Runs forward propagation of activations on the input line. // See Network for a detailed discussion of the arguments. virtual void Forward(bool debug, const NetworkIO& input, const TransposedArray* input_transpose, NetworkScratch* scratch, NetworkIO* output); // Runs backward propagation of errors on the deltas line. // See Network for a detailed discussion of the arguments. virtual bool Backward(bool debug, const NetworkIO& fwd_deltas, NetworkScratch* scratch, NetworkIO* back_deltas); // Creates and returns a Pix of appropriate size for the network from the // image_data. If non-null, *image_scale returns the image scale factor used. // Returns nullptr on error. /* static */ static Pix* PrepareLSTMInputs(const ImageData& image_data, const Network* network, int min_width, TRand* randomizer, float* image_scale); // Converts the given pix to a NetworkIO of height and depth appropriate to // the given StaticShape: // If depth == 3, convert to 24 bit color, otherwise normalized grey. // Scale to target height, if the shape's height is > 1, or its depth if the // height == 1. If height == 0 then no scaling. // NOTE: It isn't safe for multiple threads to call this on the same pix. static void PreparePixInput(const StaticShape& shape, const Pix* pix, TRand* randomizer, NetworkIO* input); private: // Input shape determines how images are dealt with. StaticShape shape_; // Cached total network x scale factor for scaling bounding boxes. int cached_x_scale_; }; } // namespace tesseract. #endif // TESSERACT_LSTM_INPUT_H_