/********************************************************************** * File: baseapi.cpp * Description: Simple API for calling tesseract. * Author: Ray Smith * Created: Fri Oct 06 15:35:01 PDT 2006 * * (C) Copyright 2006, Google Inc. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #include "baseapi.h" #include "tessedit.h" #include "ocrclass.h" #include "pageres.h" #include "tessvars.h" #include "control.h" #include "applybox.h" #include "pgedit.h" #include "varabled.h" #include "output.h" #include "globals.h" #include "adaptmatch.h" #include "edgblob.h" #include "tessbox.h" #include "tordvars.h" #include "tessvars.h" #include "imgs.h" #include "makerow.h" #include "output.h" #include "tstruct.h" #include "tessout.h" #include "tface.h" #include "adaptmatch.h" BOOL_VAR(tessedit_resegment_from_boxes, FALSE, "Take segmentation and labeling from box file"); BOOL_VAR(tessedit_train_from_boxes, FALSE, "Generate training data from boxed chars"); // Minimum sensible image size to be worth running tesseract. const int kMinRectSize = 10; static STRING input_file = "noname.tif"; // Start tesseract. // The datapath must be the name of the data directory or some other file // in which the data directory resides (for instance argv[0].) // The configfile is the name of a file in the tessconfigs directory // (eg batch) or NULL to run on defaults. // Outputbase may also be NULL, and is the basename of various output files. // If the output of any of these files is enabled, then a name nmust be given. // If numeric_mode is true, only possible digits and roman numbers are // returned. Returns 0 if successful. Crashes if not. // The argc and argv may be 0 and NULL respectively. They are used for // providing config files for debug/display purposes. // TODO(rays) get the facts straight. Is it OK to call // it more than once? Make it properly check for errors and return them. int TessBaseAPI::Init(const char* datapath, const char* outputbase, const char* configfile, bool numeric_mode, int argc, char* argv[]) { return InitWithLanguage(datapath, outputbase, NULL, configfile, numeric_mode, argc, argv); } // Start tesseract. // Similar to Init() except that it is possible to specify the language. // Language is the code of the language for which the data will be loaded. // (Codes follow ISO 639-2.) If it is NULL, english (eng) will be loaded. int TessBaseAPI::InitWithLanguage(const char* datapath, const char* outputbase, const char* language, const char* configfile, bool numeric_mode, int argc, char* argv[]) { int result = init_tesseract(datapath, outputbase, language, configfile, argc, argv); bln_numericmode.set_value(numeric_mode); return result; } // Set the name of the input file. Needed only for training and // loading a UNLV zone file. void TessBaseAPI::SetInputName(const char* name) { input_file = name; } // Recognize a rectangle from an image and return the result as a string. // May be called many times for a single Init. // Currently has no error checking. // Greyscale of 8 and color of 24 or 32 bits per pixel may be given. // Palette color images will not work properly and must be converted to // 24 bit. // Binary images of 1 bit per pixel may also be given but they must be // byte packed with the MSB of the first byte being the first pixel, and a // one pixel is WHITE. For binary images set bytes_per_pixel=0. // The recognized text is returned as a char* which (in future will be coded // as UTF8 and) must be freed with the delete [] operator. char* TessBaseAPI::TesseractRect(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, int left, int top, int width, int height) { if (width < kMinRectSize || height < kMinRectSize) return NULL; // Nothing worth doing. // Copy/Threshold the image to the tesseract global page_image. CopyImageToTesseract(imagedata, bytes_per_pixel, bytes_per_line, left, top, width, height); return RecognizeToString(); } // As TesseractRect but produces a box file as output. char* TessBaseAPI::TesseractRectBoxes(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, int left, int top, int width, int height, int imageheight) { if (width < kMinRectSize || height < kMinRectSize) return NULL; // Nothing worth doing. // Copy/Threshold the image to the tesseract global page_image. CopyImageToTesseract(imagedata, bytes_per_pixel, bytes_per_line, left, top, width, height); BLOCK_LIST block_list; FindLines(&block_list); // Now run the main recognition. PAGE_RES* page_res = Recognize(&block_list, NULL); return TesseractToBoxText(page_res, left, imageheight - (top + height)); } char* TessBaseAPI::TesseractRectUNLV(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, int left, int top, int width, int height) { if (width < kMinRectSize || height < kMinRectSize) return NULL; // Nothing worth doing. // Copy/Threshold the image to the tesseract global page_image. CopyImageToTesseract(imagedata, bytes_per_pixel, bytes_per_line, left, top, width, height); BLOCK_LIST block_list; FindLines(&block_list); // Now run the main recognition. PAGE_RES* page_res = Recognize(&block_list, NULL); return TesseractToUNLV(page_res); } // Call between pages or documents etc to free up memory and forget // adaptive data. void TessBaseAPI::ClearAdaptiveClassifier() { ResetAdaptiveClassifier(); } // Close down tesseract and free up memory. void TessBaseAPI::End() { ResetAdaptiveClassifier(); end_tesseract(); } // Dump the internal binary image to a PGM file. void TessBaseAPI::DumpPGM(const char* filename) { IMAGELINE line; line.init(page_image.get_xsize()); FILE *fp = fopen(filename, "w"); fprintf(fp, "P5 " INT32FORMAT " " INT32FORMAT " 255\n", page_image.get_xsize(), page_image.get_ysize()); for (int j = page_image.get_ysize()-1; j >= 0 ; --j) { page_image.get_line(0, j, page_image.get_xsize(), &line, 0); for (int i = 0; i < page_image.get_xsize(); ++i) { UINT8 b = line.pixels[i] ? 255 : 0; fwrite(&b, 1, 1, fp); } } fclose(fp); } // Copy the given image rectangle to Tesseract, with adaptive thresholding // if the image is not already binary. void TessBaseAPI::CopyImageToTesseract(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, int left, int top, int width, int height) { if (bytes_per_pixel > 0) { // Threshold grey or color. int* thresholds = new int[bytes_per_pixel]; int* hi_values = new int[bytes_per_pixel]; // Compute the thresholds. OtsuThreshold(imagedata, bytes_per_pixel, bytes_per_line, left, top, left + width, top + height, thresholds, hi_values); // Threshold the image to the tesseract global page_image. ThresholdRect(imagedata, bytes_per_pixel, bytes_per_line, left, top, width, height, thresholds, hi_values); delete [] thresholds; delete [] hi_values; } else { CopyBinaryRect(imagedata, bytes_per_line, left, top, width, height); } } // Compute the Otsu threshold(s) for the given image rectangle, making one // for each channel. Each channel is always one byte per pixel. // Returns an array of threshold values and an array of hi_values, such // that a pixel value >threshold[channel] is considered foreground if // hi_values[channel] is 0 or background if 1. A hi_value of -1 indicates // that there is no apparent foreground. At least one hi_value will not be -1. // thresholds and hi_values are assumed to be of bytes_per_pixel size. void TessBaseAPI::OtsuThreshold(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, int left, int top, int right, int bottom, int* thresholds, int* hi_values) { // Of all channels with no good hi_value, keep the best so we can always // produce at least one answer. int best_hi_value = 0; int best_hi_index = 0; bool any_good_hivalue = false; double best_hi_dist = 0.0; for (int ch = 0; ch < bytes_per_pixel; ++ch) { thresholds[ch] = 0; hi_values[ch] = -1; // Compute the histogram of the image rectangle. int histogram[256]; HistogramRect(imagedata + ch, bytes_per_pixel, bytes_per_line, left, top, right, bottom, histogram); int H; int best_omega_0; int best_t = OtsuStats(histogram, &H, &best_omega_0); // To be a convincing foreground we must have a small fraction of H // or to be a convincing background we must have a large fraction of H. // In between we assume this channel contains no thresholding information. int hi_value = best_omega_0 < H * 0.5; thresholds[ch] = best_t; if (best_omega_0 > H * 0.75) { any_good_hivalue = true; hi_values[ch] = 0; } else if (best_omega_0 < H * 0.25) { any_good_hivalue = true; hi_values[ch] = 1; } else { // In case all channels are like this, keep the best of the bad lot. double hi_dist = hi_value ? (H - best_omega_0) : best_omega_0; if (hi_dist > best_hi_dist) { best_hi_dist = hi_dist; best_hi_value = hi_value; best_hi_index = ch; } } } if (!any_good_hivalue) { // Use the best of the ones that were not good enough. hi_values[best_hi_index] = best_hi_value; } } // Compute the histogram for the given image rectangle, and the given // channel. (Channel pointed to by imagedata.) Each channel is always // one byte per pixel. // Bytes per pixel is used to skip channels not being // counted with this call in a multi-channel (pixel-major) image. // Histogram is always a 256 element array to count occurrences of // each pixel value. void TessBaseAPI::HistogramRect(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, int left, int top, int right, int bottom, int* histogram) { int width = right - left; memset(histogram, 0, sizeof(*histogram) * 256); const unsigned char* pix = imagedata + top*bytes_per_line + left*bytes_per_pixel; for (int y = top; y < bottom; ++y) { for (int x = 0; x < width; ++x) { ++histogram[pix[x * bytes_per_pixel]]; } pix += bytes_per_line; } } // Compute the Otsu threshold(s) for the given histogram. // Also returns H = total count in histogram, and // omega0 = count of histogram below threshold. int TessBaseAPI::OtsuStats(const int* histogram, int* H_out, int* omega0_out) { int H = 0; double mu_T = 0.0; for (int i = 0; i < 256; ++i) { H += histogram[i]; mu_T += i * histogram[i]; } // Now maximize sig_sq_B over t. // http://www.ctie.monash.edu.au/hargreave/Cornall_Terry_328.pdf int best_t = -1; int omega_0, omega_1; int best_omega_0 = 0; double best_sig_sq_B = 0.0; double mu_0, mu_1, mu_t; omega_0 = 0; mu_t = 0.0; for (int t = 0; t < 255; ++t) { omega_0 += histogram[t]; mu_t += t * static_cast(histogram[t]); if (omega_0 == 0) continue; omega_1 = H - omega_0; mu_0 = mu_t / omega_0; mu_1 = (mu_T - mu_t) / omega_1; double sig_sq_B = mu_1 - mu_0; sig_sq_B *= sig_sq_B * omega_0 * omega_1; if (best_t < 0 || sig_sq_B > best_sig_sq_B) { best_sig_sq_B = sig_sq_B; best_t = t; best_omega_0 = omega_0; } } if (H_out != NULL) *H_out = H; if (omega0_out != NULL) *omega0_out = best_omega_0; return best_t; } // Threshold the given grey or color image into the tesseract global // image ready for recognition. Requires thresholds and hi_value // produced by OtsuThreshold above. void TessBaseAPI::ThresholdRect(const unsigned char* imagedata, int bytes_per_pixel, int bytes_per_line, int left, int top, int width, int height, const int* thresholds, const int* hi_values) { IMAGELINE line; page_image.create(width, height, 1); line.init(width); // For each line in the image, fill the IMAGELINE class and put it into the // Tesseract global page_image. Note that Tesseract stores images with the // bottom at y=0 and 0 is black, so we need 2 kinds of inversion. const unsigned char* data = imagedata + top*bytes_per_line + left*bytes_per_pixel; for (int y = height - 1 ; y >= 0; --y) { const unsigned char* pix = data; for (int x = 0; x < width; ++x, pix += bytes_per_pixel) { line.pixels[x] = 1; for (int ch = 0; ch < bytes_per_pixel; ++ch) { if (hi_values[ch] >= 0 && (pix[ch] > thresholds[ch]) == (hi_values[ch] == 0)) { line.pixels[x] = 0; break; } } } page_image.put_line(0, y, width, &line, 0); data += bytes_per_line; } } // Cut out the requested rectangle of the binary image to the // tesseract global image ready for recognition. void TessBaseAPI::CopyBinaryRect(const unsigned char* imagedata, int bytes_per_line, int left, int top, int width, int height) { // Copy binary image, cutting out the required rectangle. IMAGE image; image.capture(const_cast(imagedata), bytes_per_line*8, top + height, 1); page_image.create(width, height, 1); copy_sub_image(&image, left, 0, width, height, &page_image, 0, 0, false); } // Low-level function to recognize the current global image to a string. char* TessBaseAPI::RecognizeToString() { BLOCK_LIST block_list; FindLines(&block_list); // Now run the main recognition. PAGE_RES* page_res = Recognize(&block_list, NULL); return TesseractToText(page_res); } // Find lines from the image making the BLOCK_LIST. void TessBaseAPI::FindLines(BLOCK_LIST* block_list) { // The following call creates a full-page block and then runs connected // component analysis and text line creation. pgeditor_read_file(input_file, block_list); } // Recognize the tesseract global image and return the result as Tesseract // internal structures. PAGE_RES* TessBaseAPI::Recognize(BLOCK_LIST* block_list, ETEXT_DESC* monitor) { if (tessedit_resegment_from_boxes) apply_boxes(block_list); if (edit_variables) start_variables_editor(); PAGE_RES* page_res = new PAGE_RES(block_list); if (interactive_mode) { pgeditor_main(block_list); //pgeditor user I/F } else if (tessedit_train_from_boxes) { apply_box_training(block_list); } else { // Now run the main recognition. recog_all_words(page_res, monitor); } return page_res; } // Return the maximum length that the output text string might occupy. int TessBaseAPI::TextLength(PAGE_RES* page_res) { PAGE_RES_IT page_res_it(page_res); int total_length = 2; // Iterate over the data structures to extract the recognition result. for (page_res_it.restart_page(); page_res_it.word () != NULL; page_res_it.forward()) { WERD_RES *word = page_res_it.word(); WERD_CHOICE* choice = word->best_choice; if (choice != NULL) { total_length += choice->string().length() + 1; for (int i = 0; i < word->reject_map.length(); ++i) { if (word->reject_map[i].rejected()) ++total_length; } } } return total_length; } // Make a text string from the internal data structures. // The input page_res is deleted. char* TessBaseAPI::TesseractToText(PAGE_RES* page_res) { if (page_res != NULL) { int total_length = TextLength(page_res); PAGE_RES_IT page_res_it(page_res); char* result = new char[total_length]; char* ptr = result; for (page_res_it.restart_page(); page_res_it.word () != NULL; page_res_it.forward()) { WERD_RES *word = page_res_it.word(); WERD_CHOICE* choice = word->best_choice; if (choice != NULL) { strcpy(ptr, choice->string().string()); ptr += strlen(ptr); if (word->word->flag(W_EOL)) *ptr++ = '\n'; else *ptr++ = ' '; } } *ptr++ = '\n'; *ptr = '\0'; delete page_res; return result; } return NULL; } static int ConvertWordToBoxText(WERD_RES *word, ROW_RES* row, int left, int bottom, char* word_str) { // Copy the output word and denormalize it back to image coords. WERD copy_outword; copy_outword = *(word->outword); copy_outword.baseline_denormalise(&word->denorm); PBLOB_IT blob_it; blob_it.set_to_list(copy_outword.blob_list()); int length = copy_outword.blob_list()->length(); int output_size = 0; if (length > 0) { for (int index = 0, offset = 0; index < length; offset += word->best_choice->lengths()[index++], blob_it.forward()) { PBLOB* blob = blob_it.data(); BOX blob_box = blob->bounding_box(); if (word->tess_failed || blob_box.left() < 0 || blob_box.right() > page_image.get_xsize() || blob_box.bottom() < 0 || blob_box.top() > page_image.get_ysize()) { // Bounding boxes can be illegal when tess fails on a word. blob_box = word->word->bounding_box(); // Use original word as backup. tprintf("Using substitute bounding box at (%d,%d)->(%d,%d)\n", blob_box.left(), blob_box.bottom(), blob_box.right(), blob_box.top()); } // A single classification unit can be composed of several UTF-8 // characters. Append each of them to the result. for (int sub = 0; sub < word->best_choice->lengths()[index]; ++sub) { char ch = word->best_choice->string()[offset + sub]; // Tesseract uses space for recognition failure. Fix to a reject // character, '~' so we don't create illegal box files. if (ch == ' ') ch = '~'; word_str[output_size++] = ch; } sprintf(word_str + output_size, " %d %d %d %d\n", blob_box.left() + left, blob_box.bottom() + bottom, blob_box.right() + left, blob_box.top() + bottom); output_size += strlen(word_str + output_size); } } return output_size; } // Multiplier for textlength assumes 4 numbers @ 5 digits and a space // plus the newline and the orginial character = 4*(5+1)+2 const int kMaxCharsPerChar = 26; // Make a text string from the internal data structures. // The input page_res is deleted. // The text string takes the form of a box file as needed for training. char* TessBaseAPI::TesseractToBoxText(PAGE_RES* page_res, int left, int bottom) { if (page_res != NULL) { int total_length = TextLength(page_res) * kMaxCharsPerChar; PAGE_RES_IT page_res_it(page_res); char* result = new char[total_length]; char* ptr = result; for (page_res_it.restart_page(); page_res_it.word () != NULL; page_res_it.forward()) { WERD_RES *word = page_res_it.word(); ptr += ConvertWordToBoxText(word,page_res_it.row(),left, bottom, ptr); } *ptr = '\0'; delete page_res; return result; } return NULL; } // Make a text string from the internal data structures. // The input page_res is deleted. The text string is converted // to UNLV-format: Latin-1 with specific reject and suspect codes. const char kUnrecognized = '~'; // Conversion table for non-latin characters. // Maps characters out of the latin set into the latin set. // TODO(rays) incorporate this translation into unicharset. const int kUniChs[] = { 0x20ac, 0x201c, 0x201d, 0x2018, 0x2019, 0x2022, 0x2014, 0 }; // Latin chars corresponding to the unicode chars above. const int kLatinChs[] = { 0x00a2, 0x0022, 0x0022, 0x0027, 0x0027, 0x00b7, 0x002d, 0 }; char* TessBaseAPI::TesseractToUNLV(PAGE_RES* page_res) { bool tilde_crunch_written = false; bool last_char_was_newline = true; bool last_char_was_tilde = false; if (page_res != NULL) { int total_length = TextLength(page_res); PAGE_RES_IT page_res_it(page_res); char* result = new char[total_length]; char* ptr = result; for (page_res_it.restart_page(); page_res_it.word () != NULL; page_res_it.forward()) { WERD_RES *word = page_res_it.word(); // Process the current word. if (word->unlv_crunch_mode != CR_NONE) { if (word->unlv_crunch_mode != CR_DELETE && (!tilde_crunch_written || (word->unlv_crunch_mode == CR_KEEP_SPACE && word->word->space () > 0 && !word->word->flag (W_FUZZY_NON) && !word->word->flag (W_FUZZY_SP)))) { if (!word->word->flag (W_BOL) && word->word->space () > 0 && !word->word->flag (W_FUZZY_NON) && !word->word->flag (W_FUZZY_SP)) { /* Write a space to separate from preceeding good text */ *ptr++ = ' '; last_char_was_tilde = false; } if (!last_char_was_tilde) { // Write a reject char. last_char_was_tilde = true; *ptr++ = kUnrecognized; tilde_crunch_written = true; last_char_was_newline = false; } } } else { // NORMAL PROCESSING of non tilde crunched words. tilde_crunch_written = false; if (last_char_was_tilde && word->word->space () == 0 && (word->best_choice->string ()[0] == ' ')) { /* Prevent adjacent tilde across words - we know that adjacent tildes within words have been removed */ char* p = (char *) word->best_choice->string().string (); strcpy (p, p + 1); //shuffle up p = (char *) word->best_choice->lengths().string (); strcpy (p, p + 1); //shuffle up word->reject_map.remove_pos (0); PBLOB_IT blob_it = word->outword->blob_list (); delete blob_it.extract (); //get rid of reject blob } if (word->word->flag(W_REP_CHAR) && tessedit_consistent_reps) ensure_rep_chars_are_consistent(word); set_unlv_suspects(word); const char* wordstr = word->best_choice->string().string(); if (wordstr[0] != 0) { if (!last_char_was_newline) *ptr++ = ' '; else last_char_was_newline = false; int offset = 0; const STRING& lengths = word->best_choice->lengths(); int length = lengths.length(); for (int i = 0; i < length; offset += lengths[i++]) { if (wordstr[offset] == ' ' || wordstr[offset] == '~' || wordstr[offset] == '|') { *ptr++ = kUnrecognized; last_char_was_tilde = true; } else { if (word->reject_map[i].rejected()) *ptr++ = '^'; UNICHAR ch(wordstr + offset, lengths[i]); int uni_ch = ch.first_uni(); for (int j = 0; kUniChs[j] != 0; ++j) { if (kUniChs[j] == uni_ch) { uni_ch = kLatinChs[j]; break; } } if (uni_ch <= 0xff) { *ptr++ = static_cast(uni_ch); last_char_was_tilde = false; } else { *ptr++ = kUnrecognized; last_char_was_tilde = true; } } } } } if (word->word->flag(W_EOL) && !last_char_was_newline) { /* Add a new line output */ *ptr++ = '\n'; tilde_crunch_written = false; last_char_was_newline = true; last_char_was_tilde = false; } } *ptr++ = '\n'; *ptr = '\0'; delete page_res; return result; } return NULL; } // ____________________________________________________________________________ // Ocropus add-ons. // Find lines from the image making the BLOCK_LIST. BLOCK_LIST* TessBaseAPI::FindLinesCreateBlockList() { BLOCK_LIST *block_list = new BLOCK_LIST(); FindLines(block_list); return block_list; } // Delete a block list. // This is to keep BLOCK_LIST pointer opaque // and let go of including the other headers. void TessBaseAPI::DeleteBlockList(BLOCK_LIST *block_list) { delete block_list; } static ROW *make_tess_ocrrow(float baseline, float xheight, float descender, float ascender) { INT32 xstarts[] = {-32000}; double quad_coeffs[] = {0,0,baseline}; return new ROW(1, xstarts, quad_coeffs, xheight, ascender - (baseline + xheight), descender - baseline, 0, 0); } // Almost a copy of make_tess_row() from ccmain/tstruct.cpp. static void fill_dummy_row(float baseline, float xheight, float descender, float ascender, TEXTROW* tessrow) { tessrow->baseline.segments = 1; tessrow->baseline.xstarts[0] = -32767; tessrow->baseline.xstarts[1] = 32767; tessrow->baseline.quads[0].a = 0; tessrow->baseline.quads[0].b = 0; tessrow->baseline.quads[0].c = bln_baseline_offset; tessrow->xheight.segments = 1; tessrow->xheight.xstarts[0] = -32767; tessrow->xheight.xstarts[1] = 32767; tessrow->xheight.quads[0].a = 0; tessrow->xheight.quads[0].b = 0; tessrow->xheight.quads[0].c = bln_baseline_offset + bln_x_height; tessrow->lineheight = bln_x_height; tessrow->ascrise = bln_x_height * (ascender - (xheight + baseline)) / xheight; tessrow->descdrop = bln_x_height * (descender - baseline) / xheight; } /// Return a TBLOB * from the whole page_image. /// To be freed later with free_blob(). TBLOB *make_tesseract_blob(float baseline, float xheight, float descender, float ascender) { BLOCK *block = new BLOCK ("a character", TRUE, 0, 0, 0, 0, page_image.get_xsize(), page_image.get_ysize()); // Create C_BLOBs from the page extract_edges(NULL, &page_image, &page_image, ICOORD(page_image.get_xsize(), page_image.get_ysize()), block); // Create one PBLOB from all C_BLOBs C_BLOB_LIST *list = block->blob_list(); C_BLOB_IT c_blob_it(list); PBLOB *pblob = new PBLOB; // will be (hopefully) deleted by the pblob_list for (c_blob_it.mark_cycle_pt(); !c_blob_it.cycled_list(); c_blob_it.forward()) { C_BLOB *c_blob = c_blob_it.data(); PBLOB c_as_p(c_blob, baseline + xheight); merge_blobs(pblob, &c_as_p); } PBLOB_LIST *pblob_list = new PBLOB_LIST; // will be deleted by the word PBLOB_IT pblob_it(pblob_list); pblob_it.add_after_then_move(pblob); // Normalize PBLOB WERD word(pblob_list, 0, " "); ROW *row = make_tess_ocrrow(baseline, xheight, descender, ascender); word.baseline_normalise(row); delete row; // Create a TBLOB from PBLOB return make_tess_blob(pblob, /* flatten: */ TRUE); } // Adapt to recognize the current image as the given character. // The image must be preloaded and be just an image of a single character. void TessBaseAPI::AdaptToCharacter(const char *unichar_repr, int length, float baseline, float xheight, float descender, float ascender) { UNICHAR_ID id = unicharset.unichar_to_id(unichar_repr, length); LINE_STATS LineStats; TEXTROW row; fill_dummy_row(baseline, xheight, descender, ascender, &row); GetLineStatsFromRow(&row, &LineStats); TBLOB *blob = make_tesseract_blob(baseline, xheight, descender, ascender); float threshold; int best_class = 0; float best_rating = -100; // Classify to get a raw choice. LIST result = AdaptiveClassifier(blob, NULL, &row); LIST p; for (p = result; p != NULL; p = p->next) { A_CHOICE *tesschoice = (A_CHOICE *) p->node; if (tesschoice->rating > best_rating) { best_rating = tesschoice->rating; best_class = tesschoice->string[0]; } } FLOAT32 GetBestRatingFor(TBLOB *Blob, LINE_STATS *LineStats, CLASS_ID ClassId); // We have to use char-level adaptation because otherwise // someone should do forced alignment somewhere. void AdaptToChar(TBLOB *Blob, LINE_STATS *LineStats, CLASS_ID ClassId, FLOAT32 Threshold); if (id == best_class) threshold = GoodAdaptiveMatch; else { /* the blob was incorrectly classified - find the rating threshold needed to create a template which will correct the error with some margin. However, don't waste time trying to make templates which are too tight. */ threshold = GetBestRatingFor(blob, &LineStats, id); threshold *= .9; const float max_threshold = .125; const float min_threshold = .02; if (threshold > max_threshold) threshold = max_threshold; // I have cuddled the following line to set it out of the strike // of the coverage testing tool. I have no idea how to trigger // this situation nor I have any necessity to do it. --mezhirov if (threshold < min_threshold) threshold = min_threshold; } if (blob->outlines) AdaptToChar(blob, &LineStats, id, threshold); free_blob(blob); } PAGE_RES* TessBaseAPI::RecognitionPass1(BLOCK_LIST* block_list) { PAGE_RES *page_res = new PAGE_RES(block_list); recog_all_words(page_res, NULL, NULL, 1); return page_res; } PAGE_RES* TessBaseAPI::RecognitionPass2(BLOCK_LIST* block_list, PAGE_RES* pass1_result) { if (!pass1_result) pass1_result = new PAGE_RES(block_list); recog_all_words(pass1_result, NULL, NULL, 2); return pass1_result; } struct TESS_CHAR : ELIST_LINK { char *unicode_repr; int length; // of unicode_repr float cost; BOX box; TESS_CHAR(float _cost, const char *repr, int len = -1) : cost(_cost) { length = (len == -1 ? strlen(repr) : len); unicode_repr = new char[length + 1]; strncpy(unicode_repr, repr, length); } ~TESS_CHAR() { delete unicode_repr; } }; static void add_space(ELIST_ITERATOR *it) { TESS_CHAR *t = new TESS_CHAR(0, " "); it->add_after_then_move(t); } static float rating_to_cost(float rating) { rating = 100 + rating; // cuddled that to save from coverage profiler // (I have never seen ratings worse than -100, // but the check won't hurt) if (rating < 0) rating = 0; return rating; } // Extract the OCR results, costs (penalty points for uncertainty), // and the bounding boxes of the characters. static void extract_result(ELIST_ITERATOR *out, PAGE_RES* page_res) { PAGE_RES_IT page_res_it(page_res); int word_count = 0; while (page_res_it.word() != NULL) { WERD_RES *word = page_res_it.word(); const char *str = word->best_choice->string().string(); const char *len = word->best_choice->lengths().string(); if (word_count) add_space(out); BOX bln_rect; PBLOB_LIST *blobs = word->outword->blob_list(); PBLOB_IT it(blobs); int n = strlen(len); BOX** boxes_to_fix = new BOX*[n]; for (int i = 0; i < n; i++) { PBLOB *blob = it.data(); BOX current = blob->bounding_box(); bln_rect = bln_rect.bounding_union(current); TESS_CHAR *tc = new TESS_CHAR(rating_to_cost(word->best_choice->rating()), str, *len); tc->box = current; boxes_to_fix[i] = &tc->box; out->add_after_then_move(tc); it.forward(); str += *len; len++; } // Find the word bbox before normalization. // Here we can't use the C_BLOB bboxes directly, // since connected letters are not yet cut. BOX real_rect = word->word->bounding_box(); // Denormalize boxes by transforming the bbox of the whole bln word // into the denorm bbox (`real_rect') of the whole word. double x_stretch = double(real_rect.width()) / bln_rect.width(); double y_stretch = double(real_rect.height()) / bln_rect.height(); for (int j = 0; j < n; j++) { BOX *box = boxes_to_fix[j]; int x0 = int(real_rect.left() + x_stretch * (box->left() - bln_rect.left()) + 0.5); int x1 = int(real_rect.left() + x_stretch * (box->right() - bln_rect.left()) + 0.5); int y0 = int(real_rect.bottom() + y_stretch * (box->bottom() - bln_rect.bottom()) + 0.5); int y1 = int(real_rect.bottom() + y_stretch * (box->top() - bln_rect.bottom()) + 0.5); *box = BOX(ICOORD(x0, y0), ICOORD(x1, y1)); } delete [] boxes_to_fix; page_res_it.forward(); word_count++; } } // Extract the OCR results, costs (penalty points for uncertainty), // and the bounding boxes of the characters. int TessBaseAPI::TesseractExtractResult(char** string, int** lengths, float** costs, int** x0, int** y0, int** x1, int** y1, PAGE_RES* page_res) { ELIST tess_chars; ELIST_ITERATOR tess_chars_it(&tess_chars); extract_result(&tess_chars_it, page_res); tess_chars_it.move_to_first(); int n = tess_chars.length(); int string_len = 0; *lengths = new int[n]; *costs = new float[n]; *x0 = new int[n]; *y0 = new int[n]; *x1 = new int[n]; *y1 = new int[n]; int i = 0; for (tess_chars_it.mark_cycle_pt(); !tess_chars_it.cycled_list(); tess_chars_it.forward(), i++) { TESS_CHAR *tc = (TESS_CHAR *) tess_chars_it.data(); string_len += (*lengths)[i] = tc->length; (*costs)[i] = tc->cost; (*x0)[i] = tc->box.left(); (*y0)[i] = tc->box.bottom(); (*x1)[i] = tc->box.right(); (*y1)[i] = tc->box.top(); } char *p = *string = new char[string_len]; tess_chars_it.move_to_first(); for (tess_chars_it.mark_cycle_pt(); !tess_chars_it.cycled_list(); tess_chars_it.forward()) { TESS_CHAR *tc = (TESS_CHAR *) tess_chars_it.data(); strncpy(p, tc->unicode_repr, tc->length); p += tc->length; } return n; }