/****************************************************************************** ** Filename: cluster.c ** Purpose: Routines for clustering points in N-D space ** Author: Dan Johnson ** History: 5/29/89, DSJ, Created. ** ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ******************************************************************************/ #include "const.h" #include "cluster.h" #include "emalloc.h" #include "genericheap.h" #include "helpers.h" #include "kdpair.h" #include "matrix.h" #include "tprintf.h" #include "danerror.h" #include #define HOTELLING 1 // If true use Hotelling's test to decide where to split. #define FTABLE_X 10 // Size of FTable. #define FTABLE_Y 100 // Size of FTable. // Table of values approximating the cumulative F-distribution for a confidence of 1%. const double FTable[FTABLE_Y][FTABLE_X] = { {4052.19, 4999.52, 5403.34, 5624.62, 5763.65, 5858.97, 5928.33, 5981.10, 6022.50, 6055.85,}, {98.502, 99.000, 99.166, 99.249, 99.300, 99.333, 99.356, 99.374, 99.388, 99.399,}, {34.116, 30.816, 29.457, 28.710, 28.237, 27.911, 27.672, 27.489, 27.345, 27.229,}, {21.198, 18.000, 16.694, 15.977, 15.522, 15.207, 14.976, 14.799, 14.659, 14.546,}, {16.258, 13.274, 12.060, 11.392, 10.967, 10.672, 10.456, 10.289, 10.158, 10.051,}, {13.745, 10.925, 9.780, 9.148, 8.746, 8.466, 8.260, 8.102, 7.976, 7.874,}, {12.246, 9.547, 8.451, 7.847, 7.460, 7.191, 6.993, 6.840, 6.719, 6.620,}, {11.259, 8.649, 7.591, 7.006, 6.632, 6.371, 6.178, 6.029, 5.911, 5.814,}, {10.561, 8.022, 6.992, 6.422, 6.057, 5.802, 5.613, 5.467, 5.351, 5.257,}, {10.044, 7.559, 6.552, 5.994, 5.636, 5.386, 5.200, 5.057, 4.942, 4.849,}, { 9.646, 7.206, 6.217, 5.668, 5.316, 5.069, 4.886, 4.744, 4.632, 4.539,}, { 9.330, 6.927, 5.953, 5.412, 5.064, 4.821, 4.640, 4.499, 4.388, 4.296,}, { 9.074, 6.701, 5.739, 5.205, 4.862, 4.620, 4.441, 4.302, 4.191, 4.100,}, { 8.862, 6.515, 5.564, 5.035, 4.695, 4.456, 4.278, 4.140, 4.030, 3.939,}, { 8.683, 6.359, 5.417, 4.893, 4.556, 4.318, 4.142, 4.004, 3.895, 3.805,}, { 8.531, 6.226, 5.292, 4.773, 4.437, 4.202, 4.026, 3.890, 3.780, 3.691,}, { 8.400, 6.112, 5.185, 4.669, 4.336, 4.102, 3.927, 3.791, 3.682, 3.593,}, { 8.285, 6.013, 5.092, 4.579, 4.248, 4.015, 3.841, 3.705, 3.597, 3.508,}, { 8.185, 5.926, 5.010, 4.500, 4.171, 3.939, 3.765, 3.631, 3.523, 3.434,}, { 8.096, 5.849, 4.938, 4.431, 4.103, 3.871, 3.699, 3.564, 3.457, 3.368,}, { 8.017, 5.780, 4.874, 4.369, 4.042, 3.812, 3.640, 3.506, 3.398, 3.310,}, { 7.945, 5.719, 4.817, 4.313, 3.988, 3.758, 3.587, 3.453, 3.346, 3.258,}, { 7.881, 5.664, 4.765, 4.264, 3.939, 3.710, 3.539, 3.406, 3.299, 3.211,}, { 7.823, 5.614, 4.718, 4.218, 3.895, 3.667, 3.496, 3.363, 3.256, 3.168,}, { 7.770, 5.568, 4.675, 4.177, 3.855, 3.627, 3.457, 3.324, 3.217, 3.129,}, { 7.721, 5.526, 4.637, 4.140, 3.818, 3.591, 3.421, 3.288, 3.182, 3.094,}, { 7.677, 5.488, 4.601, 4.106, 3.785, 3.558, 3.388, 3.256, 3.149, 3.062,}, { 7.636, 5.453, 4.568, 4.074, 3.754, 3.528, 3.358, 3.226, 3.120, 3.032,}, { 7.598, 5.420, 4.538, 4.045, 3.725, 3.499, 3.330, 3.198, 3.092, 3.005,}, { 7.562, 5.390, 4.510, 4.018, 3.699, 3.473, 3.305, 3.173, 3.067, 2.979,}, { 7.530, 5.362, 4.484, 3.993, 3.675, 3.449, 3.281, 3.149, 3.043, 2.955,}, { 7.499, 5.336, 4.459, 3.969, 3.652, 3.427, 3.258, 3.127, 3.021, 2.934,}, { 7.471, 5.312, 4.437, 3.948, 3.630, 3.406, 3.238, 3.106, 3.000, 2.913,}, { 7.444, 5.289, 4.416, 3.927, 3.611, 3.386, 3.218, 3.087, 2.981, 2.894,}, { 7.419, 5.268, 4.396, 3.908, 3.592, 3.368, 3.200, 3.069, 2.963, 2.876,}, { 7.396, 5.248, 4.377, 3.890, 3.574, 3.351, 3.183, 3.052, 2.946, 2.859,}, { 7.373, 5.229, 4.360, 3.873, 3.558, 3.334, 3.167, 3.036, 2.930, 2.843,}, { 7.353, 5.211, 4.343, 3.858, 3.542, 3.319, 3.152, 3.021, 2.915, 2.828,}, { 7.333, 5.194, 4.327, 3.843, 3.528, 3.305, 3.137, 3.006, 2.901, 2.814,}, { 7.314, 5.179, 4.313, 3.828, 3.514, 3.291, 3.124, 2.993, 2.888, 2.801,}, { 7.296, 5.163, 4.299, 3.815, 3.501, 3.278, 3.111, 2.980, 2.875, 2.788,}, { 7.280, 5.149, 4.285, 3.802, 3.488, 3.266, 3.099, 2.968, 2.863, 2.776,}, { 7.264, 5.136, 4.273, 3.790, 3.476, 3.254, 3.087, 2.957, 2.851, 2.764,}, { 7.248, 5.123, 4.261, 3.778, 3.465, 3.243, 3.076, 2.946, 2.840, 2.754,}, { 7.234, 5.110, 4.249, 3.767, 3.454, 3.232, 3.066, 2.935, 2.830, 2.743,}, { 7.220, 5.099, 4.238, 3.757, 3.444, 3.222, 3.056, 2.925, 2.820, 2.733,}, { 7.207, 5.087, 4.228, 3.747, 3.434, 3.213, 3.046, 2.916, 2.811, 2.724,}, { 7.194, 5.077, 4.218, 3.737, 3.425, 3.204, 3.037, 2.907, 2.802, 2.715,}, { 7.182, 5.066, 4.208, 3.728, 3.416, 3.195, 3.028, 2.898, 2.793, 2.706,}, { 7.171, 5.057, 4.199, 3.720, 3.408, 3.186, 3.020, 2.890, 2.785, 2.698,}, { 7.159, 5.047, 4.191, 3.711, 3.400, 3.178, 3.012, 2.882, 2.777, 2.690,}, { 7.149, 5.038, 4.182, 3.703, 3.392, 3.171, 3.005, 2.874, 2.769, 2.683,}, { 7.139, 5.030, 4.174, 3.695, 3.384, 3.163, 2.997, 2.867, 2.762, 2.675,}, { 7.129, 5.021, 4.167, 3.688, 3.377, 3.156, 2.990, 2.860, 2.755, 2.668,}, { 7.119, 5.013, 4.159, 3.681, 3.370, 3.149, 2.983, 2.853, 2.748, 2.662,}, { 7.110, 5.006, 4.152, 3.674, 3.363, 3.143, 2.977, 2.847, 2.742, 2.655,}, { 7.102, 4.998, 4.145, 3.667, 3.357, 3.136, 2.971, 2.841, 2.736, 2.649,}, { 7.093, 4.991, 4.138, 3.661, 3.351, 3.130, 2.965, 2.835, 2.730, 2.643,}, { 7.085, 4.984, 4.132, 3.655, 3.345, 3.124, 2.959, 2.829, 2.724, 2.637,}, { 7.077, 4.977, 4.126, 3.649, 3.339, 3.119, 2.953, 2.823, 2.718, 2.632,}, { 7.070, 4.971, 4.120, 3.643, 3.333, 3.113, 2.948, 2.818, 2.713, 2.626,}, { 7.062, 4.965, 4.114, 3.638, 3.328, 3.108, 2.942, 2.813, 2.708, 2.621,}, { 7.055, 4.959, 4.109, 3.632, 3.323, 3.103, 2.937, 2.808, 2.703, 2.616,}, { 7.048, 4.953, 4.103, 3.627, 3.318, 3.098, 2.932, 2.803, 2.698, 2.611,}, { 7.042, 4.947, 4.098, 3.622, 3.313, 3.093, 2.928, 2.798, 2.693, 2.607,}, { 7.035, 4.942, 4.093, 3.618, 3.308, 3.088, 2.923, 2.793, 2.689, 2.602,}, { 7.029, 4.937, 4.088, 3.613, 3.304, 3.084, 2.919, 2.789, 2.684, 2.598,}, { 7.023, 4.932, 4.083, 3.608, 3.299, 3.080, 2.914, 2.785, 2.680, 2.593,}, { 7.017, 4.927, 4.079, 3.604, 3.295, 3.075, 2.910, 2.781, 2.676, 2.589,}, { 7.011, 4.922, 4.074, 3.600, 3.291, 3.071, 2.906, 2.777, 2.672, 2.585,}, { 7.006, 4.917, 4.070, 3.596, 3.287, 3.067, 2.902, 2.773, 2.668, 2.581,}, { 7.001, 4.913, 4.066, 3.591, 3.283, 3.063, 2.898, 2.769, 2.664, 2.578,}, { 6.995, 4.908, 4.062, 3.588, 3.279, 3.060, 2.895, 2.765, 2.660, 2.574,}, { 6.990, 4.904, 4.058, 3.584, 3.275, 3.056, 2.891, 2.762, 2.657, 2.570,}, { 6.985, 4.900, 4.054, 3.580, 3.272, 3.052, 2.887, 2.758, 2.653, 2.567,}, { 6.981, 4.896, 4.050, 3.577, 3.268, 3.049, 2.884, 2.755, 2.650, 2.563,}, { 6.976, 4.892, 4.047, 3.573, 3.265, 3.046, 2.881, 2.751, 2.647, 2.560,}, { 6.971, 4.888, 4.043, 3.570, 3.261, 3.042, 2.877, 2.748, 2.644, 2.557,}, { 6.967, 4.884, 4.040, 3.566, 3.258, 3.039, 2.874, 2.745, 2.640, 2.554,}, { 6.963, 4.881, 4.036, 3.563, 3.255, 3.036, 2.871, 2.742, 2.637, 2.551,}, { 6.958, 4.877, 4.033, 3.560, 3.252, 3.033, 2.868, 2.739, 2.634, 2.548,}, { 6.954, 4.874, 4.030, 3.557, 3.249, 3.030, 2.865, 2.736, 2.632, 2.545,}, { 6.950, 4.870, 4.027, 3.554, 3.246, 3.027, 2.863, 2.733, 2.629, 2.542,}, { 6.947, 4.867, 4.024, 3.551, 3.243, 3.025, 2.860, 2.731, 2.626, 2.539,}, { 6.943, 4.864, 4.021, 3.548, 3.240, 3.022, 2.857, 2.728, 2.623, 2.537,}, { 6.939, 4.861, 4.018, 3.545, 3.238, 3.019, 2.854, 2.725, 2.621, 2.534,}, { 6.935, 4.858, 4.015, 3.543, 3.235, 3.017, 2.852, 2.723, 2.618, 2.532,}, { 6.932, 4.855, 4.012, 3.540, 3.233, 3.014, 2.849, 2.720, 2.616, 2.529,}, { 6.928, 4.852, 4.010, 3.538, 3.230, 3.012, 2.847, 2.718, 2.613, 2.527,}, { 6.925, 4.849, 4.007, 3.535, 3.228, 3.009, 2.845, 2.715, 2.611, 2.524,}, { 6.922, 4.846, 4.004, 3.533, 3.225, 3.007, 2.842, 2.713, 2.609, 2.522,}, { 6.919, 4.844, 4.002, 3.530, 3.223, 3.004, 2.840, 2.711, 2.606, 2.520,}, { 6.915, 4.841, 3.999, 3.528, 3.221, 3.002, 2.838, 2.709, 2.604, 2.518,}, { 6.912, 4.838, 3.997, 3.525, 3.218, 3.000, 2.835, 2.706, 2.602, 2.515,}, { 6.909, 4.836, 3.995, 3.523, 3.216, 2.998, 2.833, 2.704, 2.600, 2.513,}, { 6.906, 4.833, 3.992, 3.521, 3.214, 2.996, 2.831, 2.702, 2.598, 2.511,}, { 6.904, 4.831, 3.990, 3.519, 3.212, 2.994, 2.829, 2.700, 2.596, 2.509,}, { 6.901, 4.829, 3.988, 3.517, 3.210, 2.992, 2.827, 2.698, 2.594, 2.507,}, { 6.898, 4.826, 3.986, 3.515, 3.208, 2.990, 2.825, 2.696, 2.592, 2.505,}, { 6.895, 4.824, 3.984, 3.513, 3.206, 2.988, 2.823, 2.694, 2.590, 2.503} }; /** define the variance which will be used as a minimum variance for any dimension of any feature. Since most features are calculated from numbers with a precision no better than 1 in 128, the variance should never be less than the square of this number for parameters whose range is 1. */ #define MINVARIANCE 0.0004 /** define the absolute minimum number of samples which must be present in order to accurately test hypotheses about underlying probability distributions. Define separately the minimum samples that are needed before a statistical analysis is attempted; this number should be equal to MINSAMPLES but can be set to a lower number for early testing when very few samples are available. */ #define MINSAMPLESPERBUCKET 5 #define MINSAMPLES (MINBUCKETS * MINSAMPLESPERBUCKET) #define MINSAMPLESNEEDED 1 /** define the size of the table which maps normalized samples to histogram buckets. Also define the number of standard deviations in a normal distribution which are considered to be significant. The mapping table will be defined in such a way that it covers the specified number of standard deviations on either side of the mean. BUCKETTABLESIZE should always be even. */ #define BUCKETTABLESIZE 1024 #define NORMALEXTENT 3.0 struct TEMPCLUSTER { CLUSTER *Cluster; CLUSTER *Neighbor; }; typedef tesseract::KDPairInc ClusterPair; typedef tesseract::GenericHeap ClusterHeap; struct STATISTICS { FLOAT32 AvgVariance; FLOAT32 *CoVariance; FLOAT32 *Min; // largest negative distance from the mean FLOAT32 *Max; // largest positive distance from the mean }; struct BUCKETS { DISTRIBUTION Distribution; // distribution being tested for uint32_t SampleCount; // # of samples in histogram FLOAT64 Confidence; // confidence level of test FLOAT64 ChiSquared; // test threshold uint16_t NumberOfBuckets; // number of cells in histogram uint16_t Bucket[BUCKETTABLESIZE];// mapping to histogram buckets uint32_t *Count; // frequency of occurrence histogram FLOAT32 *ExpectedCount; // expected histogram }; struct CHISTRUCT{ uint16_t DegreesOfFreedom; FLOAT64 Alpha; FLOAT64 ChiSquared; }; // For use with KDWalk / MakePotentialClusters struct ClusteringContext { ClusterHeap *heap; // heap used to hold temp clusters, "best" on top TEMPCLUSTER *candidates; // array of potential clusters KDTREE *tree; // kd-tree to be searched for neighbors int32_t next; // next candidate to be used }; typedef FLOAT64 (*DENSITYFUNC) (int32_t); typedef FLOAT64 (*SOLVEFUNC) (CHISTRUCT *, double); #define Odd(N) ((N)%2) #define Mirror(N,R) ((R) - (N) - 1) #define Abs(N) ( ( (N) < 0 ) ? ( -(N) ) : (N) ) //--------------Global Data Definitions and Declarations---------------------- /** the following variables describe a discrete normal distribution which is used by NormalDensity() and NormalBucket(). The constant NORMALEXTENT determines how many standard deviations of the distribution are mapped onto the fixed discrete range of x. x=0 is mapped to -NORMALEXTENT standard deviations and x=BUCKETTABLESIZE is mapped to +NORMALEXTENT standard deviations. */ #define SqrtOf2Pi 2.506628275 static const FLOAT64 kNormalStdDev = BUCKETTABLESIZE / (2.0 * NORMALEXTENT); static const FLOAT64 kNormalVariance = (BUCKETTABLESIZE * BUCKETTABLESIZE) / (4.0 * NORMALEXTENT * NORMALEXTENT); static const FLOAT64 kNormalMagnitude = (2.0 * NORMALEXTENT) / (SqrtOf2Pi * BUCKETTABLESIZE); static const FLOAT64 kNormalMean = BUCKETTABLESIZE / 2; /** define lookup tables used to compute the number of histogram buckets that should be used for a given number of samples. */ #define LOOKUPTABLESIZE 8 #define MAXDEGREESOFFREEDOM MAXBUCKETS static const uint32_t kCountTable[LOOKUPTABLESIZE] = { MINSAMPLES, 200, 400, 600, 800, 1000, 1500, 2000 }; // number of samples static const uint16_t kBucketsTable[LOOKUPTABLESIZE] = { MINBUCKETS, 16, 20, 24, 27, 30, 35, MAXBUCKETS }; // number of buckets /*------------------------------------------------------------------------- Private Function Prototypes --------------------------------------------------------------------------*/ void CreateClusterTree(CLUSTERER *Clusterer); void MakePotentialClusters(ClusteringContext *context, CLUSTER *Cluster, int32_t Level); CLUSTER *FindNearestNeighbor(KDTREE *Tree, CLUSTER *Cluster, FLOAT32 *Distance); CLUSTER *MakeNewCluster(CLUSTERER *Clusterer, TEMPCLUSTER *TempCluster); int32_t MergeClusters (int16_t N, register PARAM_DESC ParamDesc[], register int32_t n1, register int32_t n2, register FLOAT32 m[], register FLOAT32 m1[], register FLOAT32 m2[]); void ComputePrototypes(CLUSTERER *Clusterer, CLUSTERCONFIG *Config); PROTOTYPE *MakePrototype(CLUSTERER *Clusterer, CLUSTERCONFIG *Config, CLUSTER *Cluster); PROTOTYPE *MakeDegenerateProto(uint16_t N, CLUSTER *Cluster, STATISTICS *Statistics, PROTOSTYLE Style, int32_t MinSamples); PROTOTYPE *TestEllipticalProto(CLUSTERER *Clusterer, CLUSTERCONFIG *Config, CLUSTER *Cluster, STATISTICS *Statistics); PROTOTYPE *MakeSphericalProto(CLUSTERER *Clusterer, CLUSTER *Cluster, STATISTICS *Statistics, BUCKETS *Buckets); PROTOTYPE *MakeEllipticalProto(CLUSTERER *Clusterer, CLUSTER *Cluster, STATISTICS *Statistics, BUCKETS *Buckets); PROTOTYPE *MakeMixedProto(CLUSTERER *Clusterer, CLUSTER *Cluster, STATISTICS *Statistics, BUCKETS *NormalBuckets, FLOAT64 Confidence); void MakeDimRandom(uint16_t i, PROTOTYPE *Proto, PARAM_DESC *ParamDesc); void MakeDimUniform(uint16_t i, PROTOTYPE *Proto, STATISTICS *Statistics); STATISTICS *ComputeStatistics (int16_t N, PARAM_DESC ParamDesc[], CLUSTER * Cluster); PROTOTYPE *NewSphericalProto(uint16_t N, CLUSTER *Cluster, STATISTICS *Statistics); PROTOTYPE *NewEllipticalProto(int16_t N, CLUSTER *Cluster, STATISTICS *Statistics); PROTOTYPE *NewMixedProto(int16_t N, CLUSTER *Cluster, STATISTICS *Statistics); PROTOTYPE *NewSimpleProto(int16_t N, CLUSTER *Cluster); BOOL8 Independent (PARAM_DESC ParamDesc[], int16_t N, FLOAT32 * CoVariance, FLOAT32 Independence); BUCKETS *GetBuckets(CLUSTERER* clusterer, DISTRIBUTION Distribution, uint32_t SampleCount, FLOAT64 Confidence); BUCKETS *MakeBuckets(DISTRIBUTION Distribution, uint32_t SampleCount, FLOAT64 Confidence); uint16_t OptimumNumberOfBuckets(uint32_t SampleCount); FLOAT64 ComputeChiSquared(uint16_t DegreesOfFreedom, FLOAT64 Alpha); FLOAT64 NormalDensity(int32_t x); FLOAT64 UniformDensity(int32_t x); FLOAT64 Integral(FLOAT64 f1, FLOAT64 f2, FLOAT64 Dx); void FillBuckets(BUCKETS *Buckets, CLUSTER *Cluster, uint16_t Dim, PARAM_DESC *ParamDesc, FLOAT32 Mean, FLOAT32 StdDev); uint16_t NormalBucket(PARAM_DESC *ParamDesc, FLOAT32 x, FLOAT32 Mean, FLOAT32 StdDev); uint16_t UniformBucket(PARAM_DESC *ParamDesc, FLOAT32 x, FLOAT32 Mean, FLOAT32 StdDev); BOOL8 DistributionOK(BUCKETS *Buckets); void FreeStatistics(STATISTICS *Statistics); void FreeBuckets(BUCKETS *Buckets); void FreeCluster(CLUSTER *Cluster); uint16_t DegreesOfFreedom(DISTRIBUTION Distribution, uint16_t HistogramBuckets); int NumBucketsMatch(void *arg1, // BUCKETS *Histogram, void *arg2); // uint16_t *DesiredNumberOfBuckets); int ListEntryMatch(void *arg1, void *arg2); void AdjustBuckets(BUCKETS *Buckets, uint32_t NewSampleCount); void InitBuckets(BUCKETS *Buckets); int AlphaMatch(void *arg1, // CHISTRUCT *ChiStruct, void *arg2); // CHISTRUCT *SearchKey); CHISTRUCT *NewChiStruct(uint16_t DegreesOfFreedom, FLOAT64 Alpha); FLOAT64 Solve(SOLVEFUNC Function, void *FunctionParams, FLOAT64 InitialGuess, FLOAT64 Accuracy); FLOAT64 ChiArea(CHISTRUCT *ChiParams, FLOAT64 x); BOOL8 MultipleCharSamples(CLUSTERER *Clusterer, CLUSTER *Cluster, FLOAT32 MaxIllegal); double InvertMatrix(const float* input, int size, float* inv); //--------------------------Public Code-------------------------------------- /** * This routine creates a new clusterer data structure, * initializes it, and returns a pointer to it. * * @param SampleSize number of dimensions in feature space * @param ParamDesc description of each dimension * @return pointer to the new clusterer data structure * @note Exceptions: None * @note History: 5/29/89, DSJ, Created. */ CLUSTERER * MakeClusterer (int16_t SampleSize, const PARAM_DESC ParamDesc[]) { CLUSTERER *Clusterer; int i; // allocate main clusterer data structure and init simple fields Clusterer = (CLUSTERER *) Emalloc (sizeof (CLUSTERER)); Clusterer->SampleSize = SampleSize; Clusterer->NumberOfSamples = 0; Clusterer->NumChar = 0; // init fields which will not be used initially Clusterer->Root = nullptr; Clusterer->ProtoList = NIL_LIST; // maintain a copy of param descriptors in the clusterer data structure Clusterer->ParamDesc = (PARAM_DESC *) Emalloc (SampleSize * sizeof (PARAM_DESC)); for (i = 0; i < SampleSize; i++) { Clusterer->ParamDesc[i].Circular = ParamDesc[i].Circular; Clusterer->ParamDesc[i].NonEssential = ParamDesc[i].NonEssential; Clusterer->ParamDesc[i].Min = ParamDesc[i].Min; Clusterer->ParamDesc[i].Max = ParamDesc[i].Max; Clusterer->ParamDesc[i].Range = ParamDesc[i].Max - ParamDesc[i].Min; Clusterer->ParamDesc[i].HalfRange = Clusterer->ParamDesc[i].Range / 2; Clusterer->ParamDesc[i].MidRange = (ParamDesc[i].Max + ParamDesc[i].Min) / 2; } // allocate a kd tree to hold the samples Clusterer->KDTree = MakeKDTree (SampleSize, ParamDesc); // Initialize cache of histogram buckets to minimize recomputing them. for (int d = 0; d < DISTRIBUTION_COUNT; ++d) { for (int c = 0; c < MAXBUCKETS + 1 - MINBUCKETS; ++c) Clusterer->bucket_cache[d][c] = nullptr; } return Clusterer; } // MakeClusterer /** * This routine creates a new sample data structure to hold * the specified feature. This sample is added to the clusterer * data structure (so that it knows which samples are to be * clustered later), and a pointer to the sample is returned to * the caller. * * @param Clusterer clusterer data structure to add sample to * @param Feature feature to be added to clusterer * @param CharID unique ident. of char that sample came from * * @return Pointer to the new sample data structure * @note Exceptions: ALREADYCLUSTERED MakeSample can't be called after * ClusterSamples has been called * @note History: 5/29/89, DSJ, Created. */ SAMPLE* MakeSample(CLUSTERER * Clusterer, const FLOAT32* Feature, int32_t CharID) { SAMPLE *Sample; int i; // see if the samples have already been clustered - if so trap an error if (Clusterer->Root != nullptr) DoError (ALREADYCLUSTERED, "Can't add samples after they have been clustered"); // allocate the new sample and initialize it Sample = (SAMPLE *) Emalloc (sizeof (SAMPLE) + (Clusterer->SampleSize - 1) * sizeof (FLOAT32)); Sample->Clustered = FALSE; Sample->Prototype = FALSE; Sample->SampleCount = 1; Sample->Left = nullptr; Sample->Right = nullptr; Sample->CharID = CharID; for (i = 0; i < Clusterer->SampleSize; i++) Sample->Mean[i] = Feature[i]; // add the sample to the KD tree - keep track of the total # of samples Clusterer->NumberOfSamples++; KDStore (Clusterer->KDTree, Sample->Mean, (char *) Sample); if (CharID >= Clusterer->NumChar) Clusterer->NumChar = CharID + 1; // execute hook for monitoring clustering operation // (*SampleCreationHook)( Sample ); return (Sample); } // MakeSample /** * This routine first checks to see if the samples in this * clusterer have already been clustered before; if so, it does * not bother to recreate the cluster tree. It simply recomputes * the prototypes based on the new Config info. * * If the samples have not been clustered before, the * samples in the KD tree are formed into a cluster tree and then * the prototypes are computed from the cluster tree. * * In either case this routine returns a pointer to a * list of prototypes that best represent the samples given * the constraints specified in Config. * * @param Clusterer data struct containing samples to be clustered * @param Config parameters which control clustering process * * @return Pointer to a list of prototypes * @note Exceptions: None * @note History: 5/29/89, DSJ, Created. */ LIST ClusterSamples(CLUSTERER *Clusterer, CLUSTERCONFIG *Config) { //only create cluster tree if samples have never been clustered before if (Clusterer->Root == nullptr) CreateClusterTree(Clusterer); //deallocate the old prototype list if one exists FreeProtoList (&Clusterer->ProtoList); Clusterer->ProtoList = NIL_LIST; //compute prototypes starting at the root node in the tree ComputePrototypes(Clusterer, Config); // We don't need the cluster pointers in the protos any more, so null them // out, which makes it safe to delete the clusterer. LIST proto_list = Clusterer->ProtoList; iterate(proto_list) { PROTOTYPE *proto = reinterpret_cast(first_node(proto_list)); proto->Cluster = nullptr; } return Clusterer->ProtoList; } // ClusterSamples /** * This routine frees all of the memory allocated to the * specified data structure. It will not, however, free * the memory used by the prototype list. The pointers to * the clusters for each prototype in the list will be set * to nullptr to indicate that the cluster data structures no * longer exist. Any sample lists that have been obtained * via calls to GetSamples are no longer valid. * @param Clusterer pointer to data structure to be freed * @return None * @note Exceptions: None * @note History: 6/6/89, DSJ, Created. */ void FreeClusterer(CLUSTERER *Clusterer) { if (Clusterer != nullptr) { free(Clusterer->ParamDesc); if (Clusterer->KDTree != nullptr) FreeKDTree (Clusterer->KDTree); if (Clusterer->Root != nullptr) FreeCluster (Clusterer->Root); // Free up all used buckets structures. for (int d = 0; d < DISTRIBUTION_COUNT; ++d) { for (int c = 0; c < MAXBUCKETS + 1 - MINBUCKETS; ++c) if (Clusterer->bucket_cache[d][c] != nullptr) FreeBuckets(Clusterer->bucket_cache[d][c]); } free(Clusterer); } } // FreeClusterer /** * This routine frees all of the memory allocated to the * specified list of prototypes. The clusters which are * pointed to by the prototypes are not freed. * @param ProtoList pointer to list of prototypes to be freed * @return None * @note Exceptions: None * @note History: 6/6/89, DSJ, Created. */ void FreeProtoList(LIST *ProtoList) { destroy_nodes(*ProtoList, FreePrototype); } // FreeProtoList /** * This routine deallocates the memory consumed by the specified * prototype and modifies the corresponding cluster so that it * is no longer marked as a prototype. The cluster is NOT * deallocated by this routine. * @param arg prototype data structure to be deallocated * @return None * @note Exceptions: None * @note History: 5/30/89, DSJ, Created. */ void FreePrototype(void *arg) { //PROTOTYPE *Prototype) PROTOTYPE *Prototype = (PROTOTYPE *) arg; // unmark the corresponding cluster (if there is one if (Prototype->Cluster != nullptr) Prototype->Cluster->Prototype = FALSE; // deallocate the prototype statistics and then the prototype itself free(Prototype->Distrib); free(Prototype->Mean); if (Prototype->Style != spherical) { free(Prototype->Variance.Elliptical); free(Prototype->Magnitude.Elliptical); free(Prototype->Weight.Elliptical); } free(Prototype); } // FreePrototype /** * This routine is used to find all of the samples which * belong to a cluster. It starts by removing the top * cluster on the cluster list (SearchState). If this cluster is * a leaf it is returned. Otherwise, the right subcluster * is pushed on the list and we continue the search in the * left subcluster. This continues until a leaf is found. * If all samples have been found, nullptr is returned. * InitSampleSearch() must be called * before NextSample() to initialize the search. * @param SearchState ptr to list containing clusters to be searched * @return Pointer to the next leaf cluster (sample) or nullptr. * @note Exceptions: None * @note History: 6/16/89, DSJ, Created. */ CLUSTER *NextSample(LIST *SearchState) { CLUSTER *Cluster; if (*SearchState == NIL_LIST) return (nullptr); Cluster = (CLUSTER *) first_node (*SearchState); *SearchState = pop (*SearchState); while (TRUE) { if (Cluster->Left == nullptr) return (Cluster); *SearchState = push (*SearchState, Cluster->Right); Cluster = Cluster->Left; } } // NextSample /** * This routine returns the mean of the specified * prototype in the indicated dimension. * @param Proto prototype to return mean of * @param Dimension dimension whose mean is to be returned * @return Mean of Prototype in Dimension * @note Exceptions: none * @note History: 7/6/89, DSJ, Created. */ FLOAT32 Mean(PROTOTYPE *Proto, uint16_t Dimension) { return (Proto->Mean[Dimension]); } // Mean /** * This routine returns the standard deviation of the * prototype in the indicated dimension. * @param Proto prototype to return standard deviation of * @param Dimension dimension whose stddev is to be returned * @return Standard deviation of Prototype in Dimension * @note Exceptions: none * @note History: 7/6/89, DSJ, Created. */ FLOAT32 StandardDeviation(PROTOTYPE *Proto, uint16_t Dimension) { switch (Proto->Style) { case spherical: return ((FLOAT32) sqrt ((double) Proto->Variance.Spherical)); case elliptical: return ((FLOAT32) sqrt ((double) Proto->Variance.Elliptical[Dimension])); case mixed: switch (Proto->Distrib[Dimension]) { case normal: return ((FLOAT32) sqrt ((double) Proto->Variance.Elliptical[Dimension])); case uniform: case D_random: return (Proto->Variance.Elliptical[Dimension]); case DISTRIBUTION_COUNT: ASSERT_HOST(!"Distribution count not allowed!"); } } return 0.0f; } // StandardDeviation /*--------------------------------------------------------------------------- Private Code ----------------------------------------------------------------------------*/ /** * This routine performs a bottoms-up clustering on the samples * held in the kd-tree of the Clusterer data structure. The * result is a cluster tree. Each node in the tree represents * a cluster which conceptually contains a subset of the samples. * More precisely, the cluster contains all of the samples which * are contained in its two sub-clusters. The leaves of the * tree are the individual samples themselves; they have no * sub-clusters. The root node of the tree conceptually contains * all of the samples. * @param Clusterer data structure holdings samples to be clustered * @return None (the Clusterer data structure is changed) * @note Exceptions: None * @note History: 5/29/89, DSJ, Created. */ void CreateClusterTree(CLUSTERER *Clusterer) { ClusteringContext context; ClusterPair HeapEntry; TEMPCLUSTER *PotentialCluster; // each sample and its nearest neighbor form a "potential" cluster // save these in a heap with the "best" potential clusters on top context.tree = Clusterer->KDTree; context.candidates = (TEMPCLUSTER *) Emalloc(Clusterer->NumberOfSamples * sizeof(TEMPCLUSTER)); context.next = 0; context.heap = new ClusterHeap(Clusterer->NumberOfSamples); KDWalk(context.tree, (void_proc)MakePotentialClusters, &context); // form potential clusters into actual clusters - always do "best" first while (context.heap->Pop(&HeapEntry)) { PotentialCluster = HeapEntry.data; // if main cluster of potential cluster is already in another cluster // then we don't need to worry about it if (PotentialCluster->Cluster->Clustered) { continue; } // if main cluster is not yet clustered, but its nearest neighbor is // then we must find a new nearest neighbor else if (PotentialCluster->Neighbor->Clustered) { PotentialCluster->Neighbor = FindNearestNeighbor(context.tree, PotentialCluster->Cluster, &HeapEntry.key); if (PotentialCluster->Neighbor != nullptr) { context.heap->Push(&HeapEntry); } } // if neither cluster is already clustered, form permanent cluster else { PotentialCluster->Cluster = MakeNewCluster(Clusterer, PotentialCluster); PotentialCluster->Neighbor = FindNearestNeighbor(context.tree, PotentialCluster->Cluster, &HeapEntry.key); if (PotentialCluster->Neighbor != nullptr) { context.heap->Push(&HeapEntry); } } } // the root node in the cluster tree is now the only node in the kd-tree Clusterer->Root = (CLUSTER *) RootOf(Clusterer->KDTree); // free up the memory used by the K-D tree, heap, and temp clusters FreeKDTree(context.tree); Clusterer->KDTree = nullptr; delete context.heap; free(context.candidates); } // CreateClusterTree /** * This routine is designed to be used in concert with the * KDWalk routine. It will create a potential cluster for * each sample in the kd-tree that is being walked. This * potential cluster will then be pushed on the heap. * @param context ClusteringContext (see definition above) * @param Cluster current cluster being visited in kd-tree walk * @param Level level of this cluster in the kd-tree */ void MakePotentialClusters(ClusteringContext *context, CLUSTER *Cluster, int32_t Level) { ClusterPair HeapEntry; int next = context->next; context->candidates[next].Cluster = Cluster; HeapEntry.data = &(context->candidates[next]); context->candidates[next].Neighbor = FindNearestNeighbor(context->tree, context->candidates[next].Cluster, &HeapEntry.key); if (context->candidates[next].Neighbor != nullptr) { context->heap->Push(&HeapEntry); context->next++; } } // MakePotentialClusters /** * This routine searches the specified kd-tree for the nearest * neighbor of the specified cluster. It actually uses the * kd routines to find the 2 nearest neighbors since one of them * will be the original cluster. A pointer to the nearest * neighbor is returned, if it can be found, otherwise nullptr is * returned. The distance between the 2 nodes is placed * in the specified variable. * @param Tree kd-tree to search in for nearest neighbor * @param Cluster cluster whose nearest neighbor is to be found * @param Distance ptr to variable to report distance found * @return Pointer to the nearest neighbor of Cluster, or nullptr * @note Exceptions: none * @note History: 5/29/89, DSJ, Created. * 7/13/89, DSJ, Removed visibility of kd-tree node data struct */ CLUSTER * FindNearestNeighbor(KDTREE * Tree, CLUSTER * Cluster, FLOAT32 * Distance) #define MAXNEIGHBORS 2 #define MAXDISTANCE MAX_FLOAT32 { CLUSTER *Neighbor[MAXNEIGHBORS]; FLOAT32 Dist[MAXNEIGHBORS]; int NumberOfNeighbors; int32_t i; CLUSTER *BestNeighbor; // find the 2 nearest neighbors of the cluster KDNearestNeighborSearch(Tree, Cluster->Mean, MAXNEIGHBORS, MAXDISTANCE, &NumberOfNeighbors, (void **)Neighbor, Dist); // search for the nearest neighbor that is not the cluster itself *Distance = MAXDISTANCE; BestNeighbor = nullptr; for (i = 0; i < NumberOfNeighbors; i++) { if ((Dist[i] < *Distance) && (Neighbor[i] != Cluster)) { *Distance = Dist[i]; BestNeighbor = Neighbor[i]; } } return BestNeighbor; } // FindNearestNeighbor /** * This routine creates a new permanent cluster from the * clusters specified in TempCluster. The 2 clusters in * TempCluster are marked as "clustered" and deleted from * the kd-tree. The new cluster is then added to the kd-tree. * @param Clusterer current clustering environment * @param TempCluster potential cluster to make permanent * @return Pointer to the new permanent cluster * @note Exceptions: none * @note History: 5/29/89, DSJ, Created. * 7/13/89, DSJ, Removed visibility of kd-tree node data struct */ CLUSTER *MakeNewCluster(CLUSTERER *Clusterer, TEMPCLUSTER *TempCluster) { CLUSTER *Cluster; // allocate the new cluster and initialize it Cluster = (CLUSTER *) Emalloc( sizeof(CLUSTER) + (Clusterer->SampleSize - 1) * sizeof(FLOAT32)); Cluster->Clustered = FALSE; Cluster->Prototype = FALSE; Cluster->Left = TempCluster->Cluster; Cluster->Right = TempCluster->Neighbor; Cluster->CharID = -1; // mark the old clusters as "clustered" and delete them from the kd-tree Cluster->Left->Clustered = TRUE; Cluster->Right->Clustered = TRUE; KDDelete(Clusterer->KDTree, Cluster->Left->Mean, Cluster->Left); KDDelete(Clusterer->KDTree, Cluster->Right->Mean, Cluster->Right); // compute the mean and sample count for the new cluster Cluster->SampleCount = MergeClusters(Clusterer->SampleSize, Clusterer->ParamDesc, Cluster->Left->SampleCount, Cluster->Right->SampleCount, Cluster->Mean, Cluster->Left->Mean, Cluster->Right->Mean); // add the new cluster to the KD tree KDStore(Clusterer->KDTree, Cluster->Mean, Cluster); return Cluster; } // MakeNewCluster /** * This routine merges two clusters into one larger cluster. * To do this it computes the number of samples in the new * cluster and the mean of the new cluster. The ParamDesc * information is used to ensure that circular dimensions * are handled correctly. * @param N # of dimensions (size of arrays) * @param ParamDesc array of dimension descriptions * @param n1, n2 number of samples in each old cluster * @param m array to hold mean of new cluster * @param m1, m2 arrays containing means of old clusters * @return The number of samples in the new cluster. * @note Exceptions: None * @note History: 5/31/89, DSJ, Created. */ int32_t MergeClusters(int16_t N, PARAM_DESC ParamDesc[], int32_t n1, int32_t n2, FLOAT32 m[], FLOAT32 m1[], FLOAT32 m2[]) { int32_t i, n; n = n1 + n2; for (i = N; i > 0; i--, ParamDesc++, m++, m1++, m2++) { if (ParamDesc->Circular) { // if distance between means is greater than allowed // reduce upper point by one "rotation" to compute mean // then normalize the mean back into the accepted range if ((*m2 - *m1) > ParamDesc->HalfRange) { *m = (n1 * *m1 + n2 * (*m2 - ParamDesc->Range)) / n; if (*m < ParamDesc->Min) *m += ParamDesc->Range; } else if ((*m1 - *m2) > ParamDesc->HalfRange) { *m = (n1 * (*m1 - ParamDesc->Range) + n2 * *m2) / n; if (*m < ParamDesc->Min) *m += ParamDesc->Range; } else *m = (n1 * *m1 + n2 * *m2) / n; } else *m = (n1 * *m1 + n2 * *m2) / n; } return n; } // MergeClusters /** * This routine decides which clusters in the cluster tree * should be represented by prototypes, forms a list of these * prototypes, and places the list in the Clusterer data * structure. * @param Clusterer data structure holding cluster tree * @param Config parameters used to control prototype generation * @return None * @note Exceptions: None * @note History: 5/30/89, DSJ, Created. */ void ComputePrototypes(CLUSTERER *Clusterer, CLUSTERCONFIG *Config) { LIST ClusterStack = NIL_LIST; CLUSTER *Cluster; PROTOTYPE *Prototype; // use a stack to keep track of clusters waiting to be processed // initially the only cluster on the stack is the root cluster if (Clusterer->Root != nullptr) ClusterStack = push (NIL_LIST, Clusterer->Root); // loop until we have analyzed all clusters which are potential prototypes while (ClusterStack != NIL_LIST) { // remove the next cluster to be analyzed from the stack // try to make a prototype from the cluster // if successful, put it on the proto list, else split the cluster Cluster = (CLUSTER *) first_node (ClusterStack); ClusterStack = pop (ClusterStack); Prototype = MakePrototype(Clusterer, Config, Cluster); if (Prototype != nullptr) { Clusterer->ProtoList = push (Clusterer->ProtoList, Prototype); } else { ClusterStack = push (ClusterStack, Cluster->Right); ClusterStack = push (ClusterStack, Cluster->Left); } } } // ComputePrototypes /** * This routine attempts to create a prototype from the * specified cluster that conforms to the distribution * specified in Config. If there are too few samples in the * cluster to perform a statistical analysis, then a prototype * is generated but labelled as insignificant. If the * dimensions of the cluster are not independent, no prototype * is generated and nullptr is returned. If a prototype can be * found that matches the desired distribution then a pointer * to it is returned, otherwise nullptr is returned. * @param Clusterer data structure holding cluster tree * @param Config parameters used to control prototype generation * @param Cluster cluster to be made into a prototype * @return Pointer to new prototype or nullptr * @note Exceptions: None * @note History: 6/19/89, DSJ, Created. */ PROTOTYPE *MakePrototype(CLUSTERER *Clusterer, CLUSTERCONFIG *Config, CLUSTER *Cluster) { STATISTICS *Statistics; PROTOTYPE *Proto; BUCKETS *Buckets; // filter out clusters which contain samples from the same character if (MultipleCharSamples (Clusterer, Cluster, Config->MaxIllegal)) return nullptr; // compute the covariance matrix and ranges for the cluster Statistics = ComputeStatistics(Clusterer->SampleSize, Clusterer->ParamDesc, Cluster); // check for degenerate clusters which need not be analyzed further // note that the MinSamples test assumes that all clusters with multiple // character samples have been removed (as above) Proto = MakeDegenerateProto( Clusterer->SampleSize, Cluster, Statistics, Config->ProtoStyle, (int32_t) (Config->MinSamples * Clusterer->NumChar)); if (Proto != nullptr) { FreeStatistics(Statistics); return Proto; } // check to ensure that all dimensions are independent if (!Independent(Clusterer->ParamDesc, Clusterer->SampleSize, Statistics->CoVariance, Config->Independence)) { FreeStatistics(Statistics); return nullptr; } if (HOTELLING && Config->ProtoStyle == elliptical) { Proto = TestEllipticalProto(Clusterer, Config, Cluster, Statistics); if (Proto != nullptr) { FreeStatistics(Statistics); return Proto; } } // create a histogram data structure used to evaluate distributions Buckets = GetBuckets(Clusterer, normal, Cluster->SampleCount, Config->Confidence); // create a prototype based on the statistics and test it switch (Config->ProtoStyle) { case spherical: Proto = MakeSphericalProto(Clusterer, Cluster, Statistics, Buckets); break; case elliptical: Proto = MakeEllipticalProto(Clusterer, Cluster, Statistics, Buckets); break; case mixed: Proto = MakeMixedProto(Clusterer, Cluster, Statistics, Buckets, Config->Confidence); break; case automatic: Proto = MakeSphericalProto(Clusterer, Cluster, Statistics, Buckets); if (Proto != nullptr) break; Proto = MakeEllipticalProto(Clusterer, Cluster, Statistics, Buckets); if (Proto != nullptr) break; Proto = MakeMixedProto(Clusterer, Cluster, Statistics, Buckets, Config->Confidence); break; } FreeStatistics(Statistics); return Proto; } // MakePrototype /** * This routine checks for clusters which are degenerate and * therefore cannot be analyzed in a statistically valid way. * A cluster is defined as degenerate if it does not have at * least MINSAMPLESNEEDED samples in it. If the cluster is * found to be degenerate, a prototype of the specified style * is generated and marked as insignificant. A cluster is * also degenerate if it does not have at least MinSamples * samples in it. * * If the cluster is not degenerate, nullptr is returned. * * @param N number of dimensions * @param Cluster cluster being analyzed * @param Statistics statistical info about cluster * @param Style type of prototype to be generated * @param MinSamples minimum number of samples in a cluster * @return Pointer to degenerate prototype or nullptr. * @note Exceptions: None * @note History: 6/20/89, DSJ, Created. * 7/12/89, DSJ, Changed name and added check for 0 stddev. * 8/8/89, DSJ, Removed check for 0 stddev (handled elsewhere). */ PROTOTYPE *MakeDegenerateProto( //this was MinSample uint16_t N, CLUSTER *Cluster, STATISTICS *Statistics, PROTOSTYLE Style, int32_t MinSamples) { PROTOTYPE *Proto = nullptr; if (MinSamples < MINSAMPLESNEEDED) MinSamples = MINSAMPLESNEEDED; if (Cluster->SampleCount < MinSamples) { switch (Style) { case spherical: Proto = NewSphericalProto (N, Cluster, Statistics); break; case elliptical: case automatic: Proto = NewEllipticalProto (N, Cluster, Statistics); break; case mixed: Proto = NewMixedProto (N, Cluster, Statistics); break; } Proto->Significant = FALSE; } return (Proto); } // MakeDegenerateProto /** * This routine tests the specified cluster to see if ** * there is a statistically significant difference between * the sub-clusters that would be made if the cluster were to * be split. If not, then a new prototype is formed and * returned to the caller. If there is, then nullptr is returned * to the caller. * @param Clusterer data struct containing samples being clustered * @param Config provides the magic number of samples that make a good cluster * @param Cluster cluster to be made into an elliptical prototype * @param Statistics statistical info about cluster * @return Pointer to new elliptical prototype or nullptr. */ PROTOTYPE *TestEllipticalProto(CLUSTERER *Clusterer, CLUSTERCONFIG *Config, CLUSTER *Cluster, STATISTICS *Statistics) { // Fraction of the number of samples used as a range around 1 within // which a cluster has the magic size that allows a boost to the // FTable by kFTableBoostMargin, thus allowing clusters near the // magic size (equal to the number of sample characters) to be more // likely to stay together. const double kMagicSampleMargin = 0.0625; const double kFTableBoostMargin = 2.0; int N = Clusterer->SampleSize; CLUSTER* Left = Cluster->Left; CLUSTER* Right = Cluster->Right; if (Left == nullptr || Right == nullptr) return nullptr; int TotalDims = Left->SampleCount + Right->SampleCount; if (TotalDims < N + 1 || TotalDims < 2) return nullptr; const int kMatrixSize = N * N * sizeof(FLOAT32); FLOAT32 *Covariance = static_cast(Emalloc(kMatrixSize)); FLOAT32 *Inverse = static_cast(Emalloc(kMatrixSize)); FLOAT32 *Delta = static_cast(Emalloc(N * sizeof(FLOAT32))); // Compute a new covariance matrix that only uses essential features. for (int i = 0; i < N; ++i) { int row_offset = i * N; if (!Clusterer->ParamDesc[i].NonEssential) { for (int j = 0; j < N; ++j) { if (!Clusterer->ParamDesc[j].NonEssential) Covariance[j + row_offset] = Statistics->CoVariance[j + row_offset]; else Covariance[j + row_offset] = 0.0f; } } else { for (int j = 0; j < N; ++j) { if (i == j) Covariance[j + row_offset] = 1.0f; else Covariance[j + row_offset] = 0.0f; } } } double err = InvertMatrix(Covariance, N, Inverse); if (err > 1) { tprintf("Clustering error: Matrix inverse failed with error %g\n", err); } int EssentialN = 0; for (int dim = 0; dim < N; ++dim) { if (!Clusterer->ParamDesc[dim].NonEssential) { Delta[dim] = Left->Mean[dim] - Right->Mean[dim]; ++EssentialN; } else { Delta[dim] = 0.0f; } } // Compute Hotelling's T-squared. double Tsq = 0.0; for (int x = 0; x < N; ++x) { double temp = 0.0; for (int y = 0; y < N; ++y) { temp += Inverse[y + N*x] * Delta[y]; } Tsq += Delta[x] * temp; } free(Covariance); free(Inverse); free(Delta); // Changed this function to match the formula in // Statistical Methods in Medical Research p 473 // By Peter Armitage, Geoffrey Berry, J. N. S. Matthews. // Tsq *= Left->SampleCount * Right->SampleCount / TotalDims; double F = Tsq * (TotalDims - EssentialN - 1) / ((TotalDims - 2)*EssentialN); int Fx = EssentialN; if (Fx > FTABLE_X) Fx = FTABLE_X; --Fx; int Fy = TotalDims - EssentialN - 1; if (Fy > FTABLE_Y) Fy = FTABLE_Y; --Fy; double FTarget = FTable[Fy][Fx]; if (Config->MagicSamples > 0 && TotalDims >= Config->MagicSamples * (1.0 - kMagicSampleMargin) && TotalDims <= Config->MagicSamples * (1.0 + kMagicSampleMargin)) { // Give magic-sized clusters a magic FTable boost. FTarget += kFTableBoostMargin; } if (F < FTarget) { return NewEllipticalProto (Clusterer->SampleSize, Cluster, Statistics); } return nullptr; } /** * This routine tests the specified cluster to see if it can * be approximated by a spherical normal distribution. If it * can be, then a new prototype is formed and returned to the * caller. If it can't be, then nullptr is returned to the caller. * @param Clusterer data struct containing samples being clustered * @param Cluster cluster to be made into a spherical prototype * @param Statistics statistical info about cluster * @param Buckets histogram struct used to analyze distribution * @return Pointer to new spherical prototype or nullptr. * @note Exceptions: None * @note History: 6/1/89, DSJ, Created. */ PROTOTYPE *MakeSphericalProto(CLUSTERER *Clusterer, CLUSTER *Cluster, STATISTICS *Statistics, BUCKETS *Buckets) { PROTOTYPE *Proto = nullptr; int i; // check that each dimension is a normal distribution for (i = 0; i < Clusterer->SampleSize; i++) { if (Clusterer->ParamDesc[i].NonEssential) continue; FillBuckets (Buckets, Cluster, i, &(Clusterer->ParamDesc[i]), Cluster->Mean[i], sqrt ((FLOAT64) (Statistics->AvgVariance))); if (!DistributionOK (Buckets)) break; } // if all dimensions matched a normal distribution, make a proto if (i >= Clusterer->SampleSize) Proto = NewSphericalProto (Clusterer->SampleSize, Cluster, Statistics); return (Proto); } // MakeSphericalProto /** * This routine tests the specified cluster to see if it can * be approximated by an elliptical normal distribution. If it * can be, then a new prototype is formed and returned to the * caller. If it can't be, then nullptr is returned to the caller. * @param Clusterer data struct containing samples being clustered * @param Cluster cluster to be made into an elliptical prototype * @param Statistics statistical info about cluster * @param Buckets histogram struct used to analyze distribution * @return Pointer to new elliptical prototype or nullptr. * @note Exceptions: None * @note History: 6/12/89, DSJ, Created. */ PROTOTYPE *MakeEllipticalProto(CLUSTERER *Clusterer, CLUSTER *Cluster, STATISTICS *Statistics, BUCKETS *Buckets) { PROTOTYPE *Proto = nullptr; int i; // check that each dimension is a normal distribution for (i = 0; i < Clusterer->SampleSize; i++) { if (Clusterer->ParamDesc[i].NonEssential) continue; FillBuckets (Buckets, Cluster, i, &(Clusterer->ParamDesc[i]), Cluster->Mean[i], sqrt ((FLOAT64) Statistics-> CoVariance[i * (Clusterer->SampleSize + 1)])); if (!DistributionOK (Buckets)) break; } // if all dimensions matched a normal distribution, make a proto if (i >= Clusterer->SampleSize) Proto = NewEllipticalProto (Clusterer->SampleSize, Cluster, Statistics); return (Proto); } // MakeEllipticalProto /** * This routine tests each dimension of the specified cluster to * see what distribution would best approximate that dimension. * Each dimension is compared to the following distributions * in order: normal, random, uniform. If each dimension can * be represented by one of these distributions, * then a new prototype is formed and returned to the * caller. If it can't be, then nullptr is returned to the caller. * @param Clusterer data struct containing samples being clustered * @param Cluster cluster to be made into a prototype * @param Statistics statistical info about cluster * @param NormalBuckets histogram struct used to analyze distribution * @param Confidence confidence level for alternate distributions * @return Pointer to new mixed prototype or nullptr. * @note Exceptions: None * @note History: 6/12/89, DSJ, Created. */ PROTOTYPE *MakeMixedProto(CLUSTERER *Clusterer, CLUSTER *Cluster, STATISTICS *Statistics, BUCKETS *NormalBuckets, FLOAT64 Confidence) { PROTOTYPE *Proto; int i; BUCKETS *UniformBuckets = nullptr; BUCKETS *RandomBuckets = nullptr; // create a mixed proto to work on - initially assume all dimensions normal*/ Proto = NewMixedProto (Clusterer->SampleSize, Cluster, Statistics); // find the proper distribution for each dimension for (i = 0; i < Clusterer->SampleSize; i++) { if (Clusterer->ParamDesc[i].NonEssential) continue; FillBuckets (NormalBuckets, Cluster, i, &(Clusterer->ParamDesc[i]), Proto->Mean[i], sqrt ((FLOAT64) Proto->Variance.Elliptical[i])); if (DistributionOK (NormalBuckets)) continue; if (RandomBuckets == nullptr) RandomBuckets = GetBuckets(Clusterer, D_random, Cluster->SampleCount, Confidence); MakeDimRandom (i, Proto, &(Clusterer->ParamDesc[i])); FillBuckets (RandomBuckets, Cluster, i, &(Clusterer->ParamDesc[i]), Proto->Mean[i], Proto->Variance.Elliptical[i]); if (DistributionOK (RandomBuckets)) continue; if (UniformBuckets == nullptr) UniformBuckets = GetBuckets(Clusterer, uniform, Cluster->SampleCount, Confidence); MakeDimUniform(i, Proto, Statistics); FillBuckets (UniformBuckets, Cluster, i, &(Clusterer->ParamDesc[i]), Proto->Mean[i], Proto->Variance.Elliptical[i]); if (DistributionOK (UniformBuckets)) continue; break; } // if any dimension failed to match a distribution, discard the proto if (i < Clusterer->SampleSize) { FreePrototype(Proto); Proto = nullptr; } return (Proto); } // MakeMixedProto /** * This routine alters the ith dimension of the specified * mixed prototype to be D_random. * @param i index of dimension to be changed * @param Proto prototype whose dimension is to be altered * @param ParamDesc description of specified dimension * @return None * @note Exceptions: None * @note History: 6/20/89, DSJ, Created. */ void MakeDimRandom(uint16_t i, PROTOTYPE *Proto, PARAM_DESC *ParamDesc) { Proto->Distrib[i] = D_random; Proto->Mean[i] = ParamDesc->MidRange; Proto->Variance.Elliptical[i] = ParamDesc->HalfRange; // subtract out the previous magnitude of this dimension from the total Proto->TotalMagnitude /= Proto->Magnitude.Elliptical[i]; Proto->Magnitude.Elliptical[i] = 1.0 / ParamDesc->Range; Proto->TotalMagnitude *= Proto->Magnitude.Elliptical[i]; Proto->LogMagnitude = log ((double) Proto->TotalMagnitude); // note that the proto Weight is irrelevant for D_random protos } // MakeDimRandom /** * This routine alters the ith dimension of the specified * mixed prototype to be uniform. * @param i index of dimension to be changed * @param Proto prototype whose dimension is to be altered * @param Statistics statistical info about prototype * @return None * @note Exceptions: None * @note History: 6/20/89, DSJ, Created. */ void MakeDimUniform(uint16_t i, PROTOTYPE *Proto, STATISTICS *Statistics) { Proto->Distrib[i] = uniform; Proto->Mean[i] = Proto->Cluster->Mean[i] + (Statistics->Min[i] + Statistics->Max[i]) / 2; Proto->Variance.Elliptical[i] = (Statistics->Max[i] - Statistics->Min[i]) / 2; if (Proto->Variance.Elliptical[i] < MINVARIANCE) Proto->Variance.Elliptical[i] = MINVARIANCE; // subtract out the previous magnitude of this dimension from the total Proto->TotalMagnitude /= Proto->Magnitude.Elliptical[i]; Proto->Magnitude.Elliptical[i] = 1.0 / (2.0 * Proto->Variance.Elliptical[i]); Proto->TotalMagnitude *= Proto->Magnitude.Elliptical[i]; Proto->LogMagnitude = log ((double) Proto->TotalMagnitude); // note that the proto Weight is irrelevant for uniform protos } // MakeDimUniform /** * This routine searches the cluster tree for all leaf nodes * which are samples in the specified cluster. It computes * a full covariance matrix for these samples as well as * keeping track of the ranges (min and max) for each * dimension. A special data structure is allocated to * return this information to the caller. An incremental * algorithm for computing statistics is not used because * it will not work with circular dimensions. * @param N number of dimensions * @param ParamDesc array of dimension descriptions * @param Cluster cluster whose stats are to be computed * @return Pointer to new data structure containing statistics * @note Exceptions: None * @note History: 6/2/89, DSJ, Created. */ STATISTICS * ComputeStatistics (int16_t N, PARAM_DESC ParamDesc[], CLUSTER * Cluster) { STATISTICS *Statistics; int i, j; FLOAT32 *CoVariance; FLOAT32 *Distance; LIST SearchState; SAMPLE *Sample; uint32_t SampleCountAdjustedForBias; // allocate memory to hold the statistics results Statistics = (STATISTICS *) Emalloc (sizeof (STATISTICS)); Statistics->CoVariance = (FLOAT32 *) Emalloc (N * N * sizeof (FLOAT32)); Statistics->Min = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32)); Statistics->Max = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32)); // allocate temporary memory to hold the sample to mean distances Distance = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32)); // initialize the statistics Statistics->AvgVariance = 1.0; CoVariance = Statistics->CoVariance; for (i = 0; i < N; i++) { Statistics->Min[i] = 0.0; Statistics->Max[i] = 0.0; for (j = 0; j < N; j++, CoVariance++) *CoVariance = 0; } // find each sample in the cluster and merge it into the statistics InitSampleSearch(SearchState, Cluster); while ((Sample = NextSample (&SearchState)) != nullptr) { for (i = 0; i < N; i++) { Distance[i] = Sample->Mean[i] - Cluster->Mean[i]; if (ParamDesc[i].Circular) { if (Distance[i] > ParamDesc[i].HalfRange) Distance[i] -= ParamDesc[i].Range; if (Distance[i] < -ParamDesc[i].HalfRange) Distance[i] += ParamDesc[i].Range; } if (Distance[i] < Statistics->Min[i]) Statistics->Min[i] = Distance[i]; if (Distance[i] > Statistics->Max[i]) Statistics->Max[i] = Distance[i]; } CoVariance = Statistics->CoVariance; for (i = 0; i < N; i++) for (j = 0; j < N; j++, CoVariance++) *CoVariance += Distance[i] * Distance[j]; } // normalize the variances by the total number of samples // use SampleCount-1 instead of SampleCount to get an unbiased estimate // also compute the geometic mean of the diagonal variances // ensure that clusters with only 1 sample are handled correctly if (Cluster->SampleCount > 1) SampleCountAdjustedForBias = Cluster->SampleCount - 1; else SampleCountAdjustedForBias = 1; CoVariance = Statistics->CoVariance; for (i = 0; i < N; i++) for (j = 0; j < N; j++, CoVariance++) { *CoVariance /= SampleCountAdjustedForBias; if (j == i) { if (*CoVariance < MINVARIANCE) *CoVariance = MINVARIANCE; Statistics->AvgVariance *= *CoVariance; } } Statistics->AvgVariance = (float)pow((double)Statistics->AvgVariance, 1.0 / N); // release temporary memory and return free(Distance); return (Statistics); } // ComputeStatistics /** * This routine creates a spherical prototype data structure to * approximate the samples in the specified cluster. * Spherical prototypes have a single variance which is * common across all dimensions. All dimensions are normally * distributed and independent. * @param N number of dimensions * @param Cluster cluster to be made into a spherical prototype * @param Statistics statistical info about samples in cluster * @return Pointer to a new spherical prototype data structure * @note Exceptions: None * @note History: 6/19/89, DSJ, Created. */ PROTOTYPE *NewSphericalProto(uint16_t N, CLUSTER *Cluster, STATISTICS *Statistics) { PROTOTYPE *Proto; Proto = NewSimpleProto (N, Cluster); Proto->Variance.Spherical = Statistics->AvgVariance; if (Proto->Variance.Spherical < MINVARIANCE) Proto->Variance.Spherical = MINVARIANCE; Proto->Magnitude.Spherical = 1.0 / sqrt ((double) (2.0 * PI * Proto->Variance.Spherical)); Proto->TotalMagnitude = (float)pow((double)Proto->Magnitude.Spherical, (double) N); Proto->Weight.Spherical = 1.0 / Proto->Variance.Spherical; Proto->LogMagnitude = log ((double) Proto->TotalMagnitude); return (Proto); } // NewSphericalProto /** * This routine creates an elliptical prototype data structure to * approximate the samples in the specified cluster. * Elliptical prototypes have a variance for each dimension. * All dimensions are normally distributed and independent. * @param N number of dimensions * @param Cluster cluster to be made into an elliptical prototype * @param Statistics statistical info about samples in cluster * @return Pointer to a new elliptical prototype data structure * @note Exceptions: None * @note History: 6/19/89, DSJ, Created. */ PROTOTYPE *NewEllipticalProto(int16_t N, CLUSTER *Cluster, STATISTICS *Statistics) { PROTOTYPE *Proto; FLOAT32 *CoVariance; int i; Proto = NewSimpleProto (N, Cluster); Proto->Variance.Elliptical = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32)); Proto->Magnitude.Elliptical = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32)); Proto->Weight.Elliptical = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32)); CoVariance = Statistics->CoVariance; Proto->TotalMagnitude = 1.0; for (i = 0; i < N; i++, CoVariance += N + 1) { Proto->Variance.Elliptical[i] = *CoVariance; if (Proto->Variance.Elliptical[i] < MINVARIANCE) Proto->Variance.Elliptical[i] = MINVARIANCE; Proto->Magnitude.Elliptical[i] = 1.0 / sqrt ((double) (2.0 * PI * Proto->Variance.Elliptical[i])); Proto->Weight.Elliptical[i] = 1.0 / Proto->Variance.Elliptical[i]; Proto->TotalMagnitude *= Proto->Magnitude.Elliptical[i]; } Proto->LogMagnitude = log ((double) Proto->TotalMagnitude); Proto->Style = elliptical; return (Proto); } // NewEllipticalProto /** * This routine creates a mixed prototype data structure to * approximate the samples in the specified cluster. * Mixed prototypes can have different distributions for * each dimension. All dimensions are independent. The * structure is initially filled in as though it were an * elliptical prototype. The actual distributions of the * dimensions can be altered by other routines. * @param N number of dimensions * @param Cluster cluster to be made into a mixed prototype * @param Statistics statistical info about samples in cluster * @return Pointer to a new mixed prototype data structure * @note Exceptions: None * @note History: 6/19/89, DSJ, Created. */ PROTOTYPE *NewMixedProto(int16_t N, CLUSTER *Cluster, STATISTICS *Statistics) { PROTOTYPE *Proto; int i; Proto = NewEllipticalProto (N, Cluster, Statistics); Proto->Distrib = (DISTRIBUTION *) Emalloc (N * sizeof (DISTRIBUTION)); for (i = 0; i < N; i++) { Proto->Distrib[i] = normal; } Proto->Style = mixed; return (Proto); } // NewMixedProto /** * This routine allocates memory to hold a simple prototype * data structure, i.e. one without independent distributions * and variances for each dimension. * @param N number of dimensions * @param Cluster cluster to be made into a prototype * @return Pointer to new simple prototype * @note Exceptions: None * @note History: 6/19/89, DSJ, Created. */ PROTOTYPE *NewSimpleProto(int16_t N, CLUSTER *Cluster) { PROTOTYPE *Proto; int i; Proto = (PROTOTYPE *) Emalloc (sizeof (PROTOTYPE)); Proto->Mean = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32)); for (i = 0; i < N; i++) Proto->Mean[i] = Cluster->Mean[i]; Proto->Distrib = nullptr; Proto->Significant = TRUE; Proto->Merged = FALSE; Proto->Style = spherical; Proto->NumSamples = Cluster->SampleCount; Proto->Cluster = Cluster; Proto->Cluster->Prototype = TRUE; return (Proto); } // NewSimpleProto /** * This routine returns TRUE if the specified covariance * matrix indicates that all N dimensions are independent of * one another. One dimension is judged to be independent of * another when the magnitude of the corresponding correlation * coefficient is * less than the specified Independence factor. The * correlation coefficient is calculated as: (see Duda and * Hart, pg. 247) * coeff[ij] = stddev[ij] / sqrt (stddev[ii] * stddev[jj]) * The covariance matrix is assumed to be symmetric (which * should always be true). * @param ParamDesc descriptions of each feature space dimension * @param N number of dimensions * @param CoVariance ptr to a covariance matrix * @param Independence max off-diagonal correlation coefficient * @return TRUE if dimensions are independent, FALSE otherwise * @note Exceptions: None * @note History: 6/4/89, DSJ, Created. */ BOOL8 Independent (PARAM_DESC ParamDesc[], int16_t N, FLOAT32 * CoVariance, FLOAT32 Independence) { int i, j; FLOAT32 *VARii; // points to ith on-diagonal element FLOAT32 *VARjj; // points to jth on-diagonal element FLOAT32 CorrelationCoeff; VARii = CoVariance; for (i = 0; i < N; i++, VARii += N + 1) { if (ParamDesc[i].NonEssential) continue; VARjj = VARii + N + 1; CoVariance = VARii + 1; for (j = i + 1; j < N; j++, CoVariance++, VARjj += N + 1) { if (ParamDesc[j].NonEssential) continue; if ((*VARii == 0.0) || (*VARjj == 0.0)) CorrelationCoeff = 0.0; else CorrelationCoeff = sqrt (sqrt (*CoVariance * *CoVariance / (*VARii * *VARjj))); if (CorrelationCoeff > Independence) return (FALSE); } } return (TRUE); } // Independent /** * This routine returns a histogram data structure which can * be used by other routines to place samples into histogram * buckets, and then apply a goodness of fit test to the * histogram data to determine if the samples belong to the * specified probability distribution. The routine keeps * a list of bucket data structures which have already been * created so that it minimizes the computation time needed * to create a new bucket. * @param clusterer which keeps a bucket_cache for us. * @param Distribution type of probability distribution to test for * @param SampleCount number of samples that are available * @param Confidence probability of a Type I error * @return Bucket data structure * @note Exceptions: none * @note History: Thu Aug 3 12:58:10 1989, DSJ, Created. */ BUCKETS *GetBuckets(CLUSTERER* clusterer, DISTRIBUTION Distribution, uint32_t SampleCount, FLOAT64 Confidence) { // Get an old bucket structure with the same number of buckets. uint16_t NumberOfBuckets = OptimumNumberOfBuckets(SampleCount); BUCKETS *Buckets = clusterer->bucket_cache[Distribution][NumberOfBuckets - MINBUCKETS]; // If a matching bucket structure is not found, make one and save it. if (Buckets == nullptr) { Buckets = MakeBuckets(Distribution, SampleCount, Confidence); clusterer->bucket_cache[Distribution][NumberOfBuckets - MINBUCKETS] = Buckets; } else { // Just adjust the existing buckets. if (SampleCount != Buckets->SampleCount) AdjustBuckets(Buckets, SampleCount); if (Confidence != Buckets->Confidence) { Buckets->Confidence = Confidence; Buckets->ChiSquared = ComputeChiSquared( DegreesOfFreedom(Distribution, Buckets->NumberOfBuckets), Confidence); } InitBuckets(Buckets); } return Buckets; } // GetBuckets /** * This routine creates a histogram data structure which can * be used by other routines to place samples into histogram * buckets, and then apply a goodness of fit test to the * histogram data to determine if the samples belong to the * specified probability distribution. The buckets are * allocated in such a way that the expected frequency of * samples in each bucket is approximately the same. In * order to make this possible, a mapping table is * computed which maps "normalized" samples into the * appropriate bucket. * @param Distribution type of probability distribution to test for * @param SampleCount number of samples that are available * @param Confidence probability of a Type I error * @return Pointer to new histogram data structure * @note Exceptions: None * @note History: 6/4/89, DSJ, Created. */ BUCKETS *MakeBuckets(DISTRIBUTION Distribution, uint32_t SampleCount, FLOAT64 Confidence) { const DENSITYFUNC DensityFunction[] = { NormalDensity, UniformDensity, UniformDensity }; int i, j; BUCKETS *Buckets; FLOAT64 BucketProbability; FLOAT64 NextBucketBoundary; FLOAT64 Probability; FLOAT64 ProbabilityDelta; FLOAT64 LastProbDensity; FLOAT64 ProbDensity; uint16_t CurrentBucket; BOOL8 Symmetrical; // allocate memory needed for data structure Buckets = static_cast(Emalloc(sizeof(BUCKETS))); Buckets->NumberOfBuckets = OptimumNumberOfBuckets(SampleCount); Buckets->SampleCount = SampleCount; Buckets->Confidence = Confidence; Buckets->Count = static_cast(Emalloc(Buckets->NumberOfBuckets * sizeof(uint32_t))); Buckets->ExpectedCount = static_cast( Emalloc(Buckets->NumberOfBuckets * sizeof(FLOAT32))); // initialize simple fields Buckets->Distribution = Distribution; for (i = 0; i < Buckets->NumberOfBuckets; i++) { Buckets->Count[i] = 0; Buckets->ExpectedCount[i] = 0.0; } // all currently defined distributions are symmetrical Symmetrical = TRUE; Buckets->ChiSquared = ComputeChiSquared( DegreesOfFreedom(Distribution, Buckets->NumberOfBuckets), Confidence); if (Symmetrical) { // allocate buckets so that all have approx. equal probability BucketProbability = 1.0 / (FLOAT64) (Buckets->NumberOfBuckets); // distribution is symmetric so fill in upper half then copy CurrentBucket = Buckets->NumberOfBuckets / 2; if (Odd (Buckets->NumberOfBuckets)) NextBucketBoundary = BucketProbability / 2; else NextBucketBoundary = BucketProbability; Probability = 0.0; LastProbDensity = (*DensityFunction[(int) Distribution]) (BUCKETTABLESIZE / 2); for (i = BUCKETTABLESIZE / 2; i < BUCKETTABLESIZE; i++) { ProbDensity = (*DensityFunction[(int) Distribution]) (i + 1); ProbabilityDelta = Integral (LastProbDensity, ProbDensity, 1.0); Probability += ProbabilityDelta; if (Probability > NextBucketBoundary) { if (CurrentBucket < Buckets->NumberOfBuckets - 1) CurrentBucket++; NextBucketBoundary += BucketProbability; } Buckets->Bucket[i] = CurrentBucket; Buckets->ExpectedCount[CurrentBucket] += (FLOAT32) (ProbabilityDelta * SampleCount); LastProbDensity = ProbDensity; } // place any leftover probability into the last bucket Buckets->ExpectedCount[CurrentBucket] += (FLOAT32) ((0.5 - Probability) * SampleCount); // copy upper half of distribution to lower half for (i = 0, j = BUCKETTABLESIZE - 1; i < j; i++, j--) Buckets->Bucket[i] = Mirror(Buckets->Bucket[j], Buckets->NumberOfBuckets); // copy upper half of expected counts to lower half for (i = 0, j = Buckets->NumberOfBuckets - 1; i <= j; i++, j--) Buckets->ExpectedCount[i] += Buckets->ExpectedCount[j]; } return Buckets; } // MakeBuckets /** * This routine computes the optimum number of histogram * buckets that should be used in a chi-squared goodness of * fit test for the specified number of samples. The optimum * number is computed based on Table 4.1 on pg. 147 of * "Measurement and Analysis of Random Data" by Bendat & Piersol. * Linear interpolation is used to interpolate between table * values. The table is intended for a 0.05 level of * significance (alpha). This routine assumes that it is * equally valid for other alpha's, which may not be true. * @param SampleCount number of samples to be tested * @return Optimum number of histogram buckets * @note Exceptions: None * @note History: 6/5/89, DSJ, Created. */ uint16_t OptimumNumberOfBuckets(uint32_t SampleCount) { uint8_t Last, Next; FLOAT32 Slope; if (SampleCount < kCountTable[0]) return kBucketsTable[0]; for (Last = 0, Next = 1; Next < LOOKUPTABLESIZE; Last++, Next++) { if (SampleCount <= kCountTable[Next]) { Slope = (FLOAT32) (kBucketsTable[Next] - kBucketsTable[Last]) / (FLOAT32) (kCountTable[Next] - kCountTable[Last]); return ((uint16_t) (kBucketsTable[Last] + Slope * (SampleCount - kCountTable[Last]))); } } return kBucketsTable[Last]; } // OptimumNumberOfBuckets /** * This routine computes the chi-squared value which will * leave a cumulative probability of Alpha in the right tail * of a chi-squared distribution with the specified number of * degrees of freedom. Alpha must be between 0 and 1. * DegreesOfFreedom must be even. The routine maintains an * array of lists. Each list corresponds to a different * number of degrees of freedom. Each entry in the list * corresponds to a different alpha value and its corresponding * chi-squared value. Therefore, once a particular chi-squared * value is computed, it is stored in the list and never * needs to be computed again. * @param DegreesOfFreedom determines shape of distribution * @param Alpha probability of right tail * @return Desired chi-squared value * @note Exceptions: none * @note History: 6/5/89, DSJ, Created. */ FLOAT64 ComputeChiSquared (uint16_t DegreesOfFreedom, FLOAT64 Alpha) #define CHIACCURACY 0.01 #define MINALPHA (1e-200) { static LIST ChiWith[MAXDEGREESOFFREEDOM + 1]; CHISTRUCT *OldChiSquared; CHISTRUCT SearchKey; // limit the minimum alpha that can be used - if alpha is too small // it may not be possible to compute chi-squared. Alpha = ClipToRange(Alpha, MINALPHA, 1.0); if (Odd (DegreesOfFreedom)) DegreesOfFreedom++; /* find the list of chi-squared values which have already been computed for the specified number of degrees of freedom. Search the list for the desired chi-squared. */ SearchKey.Alpha = Alpha; OldChiSquared = (CHISTRUCT *) first_node (search (ChiWith[DegreesOfFreedom], &SearchKey, AlphaMatch)); if (OldChiSquared == nullptr) { OldChiSquared = NewChiStruct (DegreesOfFreedom, Alpha); OldChiSquared->ChiSquared = Solve (ChiArea, OldChiSquared, (FLOAT64) DegreesOfFreedom, (FLOAT64) CHIACCURACY); ChiWith[DegreesOfFreedom] = push (ChiWith[DegreesOfFreedom], OldChiSquared); } else { // further optimization might move OldChiSquared to front of list } return (OldChiSquared->ChiSquared); } // ComputeChiSquared /** * This routine computes the probability density function * of a discrete normal distribution defined by the global * variables kNormalMean, kNormalVariance, and kNormalMagnitude. * Normal magnitude could, of course, be computed in terms of * the normal variance but it is precomputed for efficiency. * @param x number to compute the normal probability density for * @note Globals: * kNormalMean mean of a discrete normal distribution * kNormalVariance variance of a discrete normal distribution * kNormalMagnitude magnitude of a discrete normal *distribution * @return The value of the normal distribution at x. * @note Exceptions: None * @note History: 6/4/89, DSJ, Created. */ FLOAT64 NormalDensity(int32_t x) { FLOAT64 Distance; Distance = x - kNormalMean; return kNormalMagnitude * exp(-0.5 * Distance * Distance / kNormalVariance); } // NormalDensity /** * This routine computes the probability density function * of a uniform distribution at the specified point. The * range of the distribution is from 0 to BUCKETTABLESIZE. * @param x number to compute the uniform probability density for * @return The value of the uniform distribution at x. * @note Exceptions: None * @note History: 6/5/89, DSJ, Created. */ FLOAT64 UniformDensity(int32_t x) { static FLOAT64 UniformDistributionDensity = (FLOAT64) 1.0 / BUCKETTABLESIZE; if ((x >= 0.0) && (x <= BUCKETTABLESIZE)) return UniformDistributionDensity; else return (FLOAT64) 0.0; } // UniformDensity /** * This routine computes a trapezoidal approximation to the * integral of a function over a small delta in x. * @param f1 value of function at x1 * @param f2 value of function at x2 * @param Dx x2 - x1 (should always be positive) * @return Approximation of the integral of the function from x1 to x2. * @note Exceptions: None * @note History: 6/5/89, DSJ, Created. */ FLOAT64 Integral(FLOAT64 f1, FLOAT64 f2, FLOAT64 Dx) { return (f1 + f2) * Dx / 2.0; } // Integral /** * This routine counts the number of cluster samples which * fall within the various histogram buckets in Buckets. Only * one dimension of each sample is examined. The exact meaning * of the Mean and StdDev parameters depends on the * distribution which is being analyzed (this info is in the * Buckets data structure). For normal distributions, Mean * and StdDev have the expected meanings. For uniform and * random distributions the Mean is the center point of the * range and the StdDev is 1/2 the range. A dimension with * zero standard deviation cannot be statistically analyzed. * In this case, a pseudo-analysis is used. * @param Buckets histogram buckets to count samples * @param Cluster cluster whose samples are being analyzed * @param Dim dimension of samples which is being analyzed * @param ParamDesc description of the dimension * @param Mean "mean" of the distribution * @param StdDev "standard deviation" of the distribution * @return None (the Buckets data structure is filled in) * @note Exceptions: None * @note History: 6/5/89, DSJ, Created. */ void FillBuckets(BUCKETS *Buckets, CLUSTER *Cluster, uint16_t Dim, PARAM_DESC *ParamDesc, FLOAT32 Mean, FLOAT32 StdDev) { uint16_t BucketID; int i; LIST SearchState; SAMPLE *Sample; // initialize the histogram bucket counts to 0 for (i = 0; i < Buckets->NumberOfBuckets; i++) Buckets->Count[i] = 0; if (StdDev == 0.0) { /* if the standard deviation is zero, then we can't statistically analyze the cluster. Use a pseudo-analysis: samples exactly on the mean are distributed evenly across all buckets. Samples greater than the mean are placed in the last bucket; samples less than the mean are placed in the first bucket. */ InitSampleSearch(SearchState, Cluster); i = 0; while ((Sample = NextSample (&SearchState)) != nullptr) { if (Sample->Mean[Dim] > Mean) BucketID = Buckets->NumberOfBuckets - 1; else if (Sample->Mean[Dim] < Mean) BucketID = 0; else BucketID = i; Buckets->Count[BucketID] += 1; i++; if (i >= Buckets->NumberOfBuckets) i = 0; } } else { // search for all samples in the cluster and add to histogram buckets InitSampleSearch(SearchState, Cluster); while ((Sample = NextSample (&SearchState)) != nullptr) { switch (Buckets->Distribution) { case normal: BucketID = NormalBucket (ParamDesc, Sample->Mean[Dim], Mean, StdDev); break; case D_random: case uniform: BucketID = UniformBucket (ParamDesc, Sample->Mean[Dim], Mean, StdDev); break; default: BucketID = 0; } Buckets->Count[Buckets->Bucket[BucketID]] += 1; } } } // FillBuckets /** * This routine determines which bucket x falls into in the * discrete normal distribution defined by kNormalMean * and kNormalStdDev. x values which exceed the range of * the discrete distribution are clipped. * @param ParamDesc used to identify circular dimensions * @param x value to be normalized * @param Mean mean of normal distribution * @param StdDev standard deviation of normal distribution * @return Bucket number into which x falls * @note Exceptions: None * @note History: 6/5/89, DSJ, Created. */ uint16_t NormalBucket(PARAM_DESC *ParamDesc, FLOAT32 x, FLOAT32 Mean, FLOAT32 StdDev) { FLOAT32 X; // wraparound circular parameters if necessary if (ParamDesc->Circular) { if (x - Mean > ParamDesc->HalfRange) x -= ParamDesc->Range; else if (x - Mean < -ParamDesc->HalfRange) x += ParamDesc->Range; } X = ((x - Mean) / StdDev) * kNormalStdDev + kNormalMean; if (X < 0) return 0; if (X > BUCKETTABLESIZE - 1) return ((uint16_t) (BUCKETTABLESIZE - 1)); return (uint16_t) floor((FLOAT64) X); } // NormalBucket /** * This routine determines which bucket x falls into in the * discrete uniform distribution defined by * BUCKETTABLESIZE. x values which exceed the range of * the discrete distribution are clipped. * @param ParamDesc used to identify circular dimensions * @param x value to be normalized * @param Mean center of range of uniform distribution * @param StdDev 1/2 the range of the uniform distribution * @return Bucket number into which x falls * @note Exceptions: None * @note History: 6/5/89, DSJ, Created. */ uint16_t UniformBucket(PARAM_DESC *ParamDesc, FLOAT32 x, FLOAT32 Mean, FLOAT32 StdDev) { FLOAT32 X; // wraparound circular parameters if necessary if (ParamDesc->Circular) { if (x - Mean > ParamDesc->HalfRange) x -= ParamDesc->Range; else if (x - Mean < -ParamDesc->HalfRange) x += ParamDesc->Range; } X = ((x - Mean) / (2 * StdDev) * BUCKETTABLESIZE + BUCKETTABLESIZE / 2.0); if (X < 0) return 0; if (X > BUCKETTABLESIZE - 1) return (uint16_t) (BUCKETTABLESIZE - 1); return (uint16_t) floor((FLOAT64) X); } // UniformBucket /** * This routine performs a chi-square goodness of fit test * on the histogram data in the Buckets data structure. TRUE * is returned if the histogram matches the probability * distribution which was specified when the Buckets * structure was originally created. Otherwise FALSE is * returned. * @param Buckets histogram data to perform chi-square test on * @return TRUE if samples match distribution, FALSE otherwise * @note Exceptions: None * @note History: 6/5/89, DSJ, Created. */ BOOL8 DistributionOK(BUCKETS *Buckets) { FLOAT32 FrequencyDifference; FLOAT32 TotalDifference; int i; // compute how well the histogram matches the expected histogram TotalDifference = 0.0; for (i = 0; i < Buckets->NumberOfBuckets; i++) { FrequencyDifference = Buckets->Count[i] - Buckets->ExpectedCount[i]; TotalDifference += (FrequencyDifference * FrequencyDifference) / Buckets->ExpectedCount[i]; } // test to see if the difference is more than expected if (TotalDifference > Buckets->ChiSquared) return FALSE; else return TRUE; } // DistributionOK /** * This routine frees the memory used by the statistics * data structure. * @param Statistics pointer to data structure to be freed * @return None * @note Exceptions: None * @note History: 6/5/89, DSJ, Created. */ void FreeStatistics(STATISTICS *Statistics) { free(Statistics->CoVariance); free(Statistics->Min); free(Statistics->Max); free(Statistics); } // FreeStatistics /** * This routine properly frees the memory used by a BUCKETS. * * @param buckets pointer to data structure to be freed */ void FreeBuckets(BUCKETS *buckets) { Efree(buckets->Count); Efree(buckets->ExpectedCount); Efree(buckets); } // FreeBuckets /** * This routine frees the memory consumed by the specified * cluster and all of its subclusters. This is done by * recursive calls to FreeCluster(). * * @param Cluster pointer to cluster to be freed * * @return None * * @note Exceptions: None * @note History: 6/6/89, DSJ, Created. */ void FreeCluster(CLUSTER *Cluster) { if (Cluster != nullptr) { FreeCluster (Cluster->Left); FreeCluster (Cluster->Right); free(Cluster); } } // FreeCluster /** * This routine computes the degrees of freedom that should * be used in a chi-squared test with the specified number of * histogram buckets. The result is always rounded up to * the next even number so that the value of chi-squared can be * computed more easily. This will cause the value of * chi-squared to be higher than the optimum value, resulting * in the chi-square test being more lenient than optimum. * @param Distribution distribution being tested for * @param HistogramBuckets number of buckets in chi-square test * @return The number of degrees of freedom for a chi-square test * @note Exceptions: none * @note History: Thu Aug 3 14:04:18 1989, DSJ, Created. */ uint16_t DegreesOfFreedom(DISTRIBUTION Distribution, uint16_t HistogramBuckets) { static uint8_t DegreeOffsets[] = { 3, 3, 1 }; uint16_t AdjustedNumBuckets; AdjustedNumBuckets = HistogramBuckets - DegreeOffsets[(int) Distribution]; if (Odd (AdjustedNumBuckets)) AdjustedNumBuckets++; return (AdjustedNumBuckets); } // DegreesOfFreedom /** * This routine is used to search a list of histogram data * structures to find one with the specified number of * buckets. It is called by the list search routines. * @param arg1 current histogram being tested for a match * @param arg2 match key * @return TRUE if arg1 matches arg2 * @note Exceptions: none * @note History: Thu Aug 3 14:17:33 1989, DSJ, Created. */ int NumBucketsMatch(void *arg1, // BUCKETS *Histogram, void *arg2) { // uint16_t *DesiredNumberOfBuckets) BUCKETS *Histogram = (BUCKETS *) arg1; uint16_t *DesiredNumberOfBuckets = (uint16_t *) arg2; return (*DesiredNumberOfBuckets == Histogram->NumberOfBuckets); } // NumBucketsMatch /** * This routine is used to search a list for a list node * whose contents match Key. It is called by the list * delete_d routine. * @return TRUE if ListNode matches Key * @note Exceptions: none * @note History: Thu Aug 3 14:23:58 1989, DSJ, Created. */ int ListEntryMatch(void *arg1, //ListNode void *arg2) { //Key return (arg1 == arg2); } // ListEntryMatch /** * This routine multiplies each ExpectedCount histogram entry * by NewSampleCount/OldSampleCount so that the histogram * is now adjusted to the new sample count. * @param Buckets histogram data structure to adjust * @param NewSampleCount new sample count to adjust to * @return none * @note Exceptions: none * @note History: Thu Aug 3 14:31:14 1989, DSJ, Created. */ void AdjustBuckets(BUCKETS *Buckets, uint32_t NewSampleCount) { int i; FLOAT64 AdjustFactor; AdjustFactor = (((FLOAT64) NewSampleCount) / ((FLOAT64) Buckets->SampleCount)); for (i = 0; i < Buckets->NumberOfBuckets; i++) { Buckets->ExpectedCount[i] *= AdjustFactor; } Buckets->SampleCount = NewSampleCount; } // AdjustBuckets /** * This routine sets the bucket counts in the specified histogram * to zero. * @param Buckets histogram data structure to init * @return none * @note Exceptions: none * @note History: Thu Aug 3 14:31:14 1989, DSJ, Created. */ void InitBuckets(BUCKETS *Buckets) { int i; for (i = 0; i < Buckets->NumberOfBuckets; i++) { Buckets->Count[i] = 0; } } // InitBuckets /** * This routine is used to search a list of structures which * hold pre-computed chi-squared values for a chi-squared * value whose corresponding alpha field matches the alpha * field of SearchKey. * * It is called by the list search routines. * * @param arg1 chi-squared struct being tested for a match * @param arg2 chi-squared struct that is the search key * @return TRUE if ChiStruct's Alpha matches SearchKey's Alpha * @note Exceptions: none * @note History: Thu Aug 3 14:17:33 1989, DSJ, Created. */ int AlphaMatch(void *arg1, //CHISTRUCT *ChiStruct, void *arg2) { //CHISTRUCT *SearchKey) CHISTRUCT *ChiStruct = (CHISTRUCT *) arg1; CHISTRUCT *SearchKey = (CHISTRUCT *) arg2; return (ChiStruct->Alpha == SearchKey->Alpha); } // AlphaMatch /** * This routine allocates a new data structure which is used * to hold a chi-squared value along with its associated * number of degrees of freedom and alpha value. * * @param DegreesOfFreedom degrees of freedom for new chi value * @param Alpha confidence level for new chi value * @return none * @note Exceptions: none * @note History: Fri Aug 4 11:04:59 1989, DSJ, Created. */ CHISTRUCT *NewChiStruct(uint16_t DegreesOfFreedom, FLOAT64 Alpha) { CHISTRUCT *NewChiStruct; NewChiStruct = (CHISTRUCT *) Emalloc (sizeof (CHISTRUCT)); NewChiStruct->DegreesOfFreedom = DegreesOfFreedom; NewChiStruct->Alpha = Alpha; return (NewChiStruct); } // NewChiStruct /** * This routine attempts to find an x value at which Function * goes to zero (i.e. a root of the function ). It will only * work correctly if a solution actually exists and there * are no extrema between the solution and the InitialGuess. * The algorithms used are extremely primitive. * * @param Function function whose zero is to be found * @param FunctionParams arbitrary data to pass to function * @param InitialGuess point to start solution search at * @param Accuracy maximum allowed error * @return Solution of function ( x for which f(x) = 0 ). * @note Exceptions: none * @note History: Fri Aug 4 11:08:59 1989, DSJ, Created. */ FLOAT64 Solve (SOLVEFUNC Function, void *FunctionParams, FLOAT64 InitialGuess, FLOAT64 Accuracy) #define INITIALDELTA 0.1 #define DELTARATIO 0.1 { FLOAT64 x; FLOAT64 f; FLOAT64 Slope; FLOAT64 Delta; FLOAT64 NewDelta; FLOAT64 xDelta; FLOAT64 LastPosX, LastNegX; x = InitialGuess; Delta = INITIALDELTA; LastPosX = MAX_FLOAT32; LastNegX = -MAX_FLOAT32; f = (*Function) ((CHISTRUCT *) FunctionParams, x); while (Abs (LastPosX - LastNegX) > Accuracy) { // keep track of outer bounds of current estimate if (f < 0) LastNegX = x; else LastPosX = x; // compute the approx. slope of f(x) at the current point Slope = ((*Function) ((CHISTRUCT *) FunctionParams, x + Delta) - f) / Delta; // compute the next solution guess */ xDelta = f / Slope; x -= xDelta; // reduce the delta used for computing slope to be a fraction of //the amount moved to get to the new guess NewDelta = Abs (xDelta) * DELTARATIO; if (NewDelta < Delta) Delta = NewDelta; // compute the value of the function at the new guess f = (*Function) ((CHISTRUCT *) FunctionParams, x); } return (x); } // Solve /** * This routine computes the area under a chi density curve * from 0 to x, minus the desired area under the curve. The * number of degrees of freedom of the chi curve is specified * in the ChiParams structure. The desired area is also * specified in the ChiParams structure as Alpha ( or 1 minus * the desired area ). This routine is intended to be passed * to the Solve() function to find the value of chi-squared * which will yield a desired area under the right tail of * the chi density curve. The function will only work for * even degrees of freedom. The equations are based on * integrating the chi density curve in parts to obtain * a series that can be used to compute the area under the * curve. * @param ChiParams contains degrees of freedom and alpha * @param x value of chi-squared to evaluate * @return Error between actual and desired area under the chi curve. * @note Exceptions: none * @note History: Fri Aug 4 12:48:41 1989, DSJ, Created. */ FLOAT64 ChiArea(CHISTRUCT *ChiParams, FLOAT64 x) { int i, N; FLOAT64 SeriesTotal; FLOAT64 Denominator; FLOAT64 PowerOfx; N = ChiParams->DegreesOfFreedom / 2 - 1; SeriesTotal = 1; Denominator = 1; PowerOfx = 1; for (i = 1; i <= N; i++) { Denominator *= 2 * i; PowerOfx *= x; SeriesTotal += PowerOfx / Denominator; } return ((SeriesTotal * exp (-0.5 * x)) - ChiParams->Alpha); } // ChiArea /** * This routine looks at all samples in the specified cluster. * It computes a running estimate of the percentage of the * charaters which have more than 1 sample in the cluster. * When this percentage exceeds MaxIllegal, TRUE is returned. * Otherwise FALSE is returned. The CharID * fields must contain integers which identify the training * characters which were used to generate the sample. One * integer is used for each sample. The NumChar field in * the Clusterer must contain the number of characters in the * training set. All CharID fields must be between 0 and * NumChar-1. The main function of this routine is to help * identify clusters which need to be split further, i.e. if * numerous training characters have 2 or more features which are * contained in the same cluster, then the cluster should be * split. * * @param Clusterer data structure holding cluster tree * @param Cluster cluster containing samples to be tested * @param MaxIllegal max percentage of samples allowed to have * more than 1 feature in the cluster * @return TRUE if the cluster should be split, FALSE otherwise. * @note Exceptions: none * @note History: Wed Aug 30 11:13:05 1989, DSJ, Created. * 2/22/90, DSJ, Added MaxIllegal control rather than always * splitting illegal clusters. */ BOOL8 MultipleCharSamples (CLUSTERER * Clusterer, CLUSTER * Cluster, FLOAT32 MaxIllegal) #define ILLEGAL_CHAR 2 { static BOOL8 *CharFlags = nullptr; static int32_t NumFlags = 0; int i; LIST SearchState; SAMPLE *Sample; int32_t CharID; int32_t NumCharInCluster; int32_t NumIllegalInCluster; FLOAT32 PercentIllegal; // initial estimate assumes that no illegal chars exist in the cluster NumCharInCluster = Cluster->SampleCount; NumIllegalInCluster = 0; if (Clusterer->NumChar > NumFlags) { free(CharFlags); NumFlags = Clusterer->NumChar; CharFlags = (BOOL8 *) Emalloc (NumFlags * sizeof (BOOL8)); } for (i = 0; i < NumFlags; i++) CharFlags[i] = FALSE; // find each sample in the cluster and check if we have seen it before InitSampleSearch(SearchState, Cluster); while ((Sample = NextSample (&SearchState)) != nullptr) { CharID = Sample->CharID; if (CharFlags[CharID] == FALSE) { CharFlags[CharID] = TRUE; } else { if (CharFlags[CharID] == TRUE) { NumIllegalInCluster++; CharFlags[CharID] = ILLEGAL_CHAR; } NumCharInCluster--; PercentIllegal = (FLOAT32) NumIllegalInCluster / NumCharInCluster; if (PercentIllegal > MaxIllegal) { destroy(SearchState); return (TRUE); } } } return (FALSE); } // MultipleCharSamples /** * Compute the inverse of a matrix using LU decomposition with partial pivoting. * The return value is the sum of norms of the off-diagonal terms of the * product of a and inv. (A measure of the error.) */ double InvertMatrix(const float* input, int size, float* inv) { // Allocate memory for the 2D arrays. GENERIC_2D_ARRAY U(size, size, 0.0); GENERIC_2D_ARRAY U_inv(size, size, 0.0); GENERIC_2D_ARRAY L(size, size, 0.0); // Initialize the working matrices. U starts as input, L as I and U_inv as O. int row; int col; for (row = 0; row < size; row++) { for (col = 0; col < size; col++) { U[row][col] = input[row*size + col]; L[row][col] = row == col ? 1.0 : 0.0; U_inv[row][col] = 0.0; } } // Compute forward matrix by inversion by LU decomposition of input. for (col = 0; col < size; ++col) { // Find best pivot int best_row = 0; double best_pivot = -1.0; for (row = col; row < size; ++row) { if (Abs(U[row][col]) > best_pivot) { best_pivot = Abs(U[row][col]); best_row = row; } } // Exchange pivot rows. if (best_row != col) { for (int k = 0; k < size; ++k) { double tmp = U[best_row][k]; U[best_row][k] = U[col][k]; U[col][k] = tmp; tmp = L[best_row][k]; L[best_row][k] = L[col][k]; L[col][k] = tmp; } } // Now do the pivot itself. for (row = col + 1; row < size; ++row) { double ratio = -U[row][col] / U[col][col]; for (int j = col; j < size; ++j) { U[row][j] += U[col][j] * ratio; } for (int k = 0; k < size; ++k) { L[row][k] += L[col][k] * ratio; } } } // Next invert U. for (col = 0; col < size; ++col) { U_inv[col][col] = 1.0 / U[col][col]; for (row = col - 1; row >= 0; --row) { double total = 0.0; for (int k = col; k > row; --k) { total += U[row][k] * U_inv[k][col]; } U_inv[row][col] = -total / U[row][row]; } } // Now the answer is U_inv.L. for (row = 0; row < size; row++) { for (col = 0; col < size; col++) { double sum = 0.0; for (int k = row; k < size; ++k) { sum += U_inv[row][k] * L[k][col]; } inv[row*size + col] = sum; } } // Check matrix product. double error_sum = 0.0; for (row = 0; row < size; row++) { for (col = 0; col < size; col++) { double sum = 0.0; for (int k = 0; k < size; ++k) { sum += input[row*size + k] * inv[k *size + col]; } if (row != col) { error_sum += Abs(sum); } } } return error_sum; }