/* -*-C-*- ******************************************************************************** * * File: chopper.cpp (Formerly chopper.c) * Description: * Author: Mark Seaman, OCR Technology * Created: Fri Oct 16 14:37:00 1987 * Modified: Tue Jul 30 16:18:52 1991 (Mark Seaman) marks@hpgrlt * Language: C * Package: N/A * Status: Reusable Software Component * * (c) Copyright 1987, Hewlett-Packard Company. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **************************************************************************/ /*---------------------------------------------------------------------- I n c l u d e s ----------------------------------------------------------------------*/ #include #include "chopper.h" #include "assert.h" #include "associate.h" #include "blobs.h" #include "callcpp.h" #include "const.h" #include "findseam.h" #include "globals.h" #include "render.h" #include "pageres.h" #include "seam.h" #include "stopper.h" #include "structures.h" #include "unicharset.h" #include "wordrec.h" // Include automatically generated configuration file if running autoconf. #ifdef HAVE_CONFIG_H #include "config_auto.h" #endif // Even though the limit on the number of chunks may now be removed, keep // the same limit for repeatable behavior, and it may be a speed advantage. static const int kMaxNumChunks = 64; /*---------------------------------------------------------------------- F u n c t i o n s ----------------------------------------------------------------------*/ /** * @name preserve_outline_tree * * Copy the list of outlines. */ void preserve_outline(EDGEPT *start) { EDGEPT *srcpt; if (start == nullptr) return; srcpt = start; do { srcpt->flags[1] = 1; srcpt = srcpt->next; } while (srcpt != start); srcpt->flags[1] = 2; } /**************************************************************************/ void preserve_outline_tree(TESSLINE *srcline) { TESSLINE *outline; for (outline = srcline; outline != nullptr; outline = outline->next) { preserve_outline (outline->loop); } } /** * @name restore_outline_tree * * Copy the list of outlines. */ EDGEPT *restore_outline(EDGEPT *start) { EDGEPT *srcpt; EDGEPT *real_start; if (start == nullptr) return nullptr; srcpt = start; do { if (srcpt->flags[1] == 2) break; srcpt = srcpt->next; } while (srcpt != start); real_start = srcpt; do { srcpt = srcpt->next; if (srcpt->prev->flags[1] == 0) { remove_edgept(srcpt->prev); } } while (srcpt != real_start); return real_start; } /******************************************************************************/ void restore_outline_tree(TESSLINE *srcline) { TESSLINE *outline; for (outline = srcline; outline != nullptr; outline = outline->next) { outline->loop = restore_outline (outline->loop); outline->start = outline->loop->pos; } } // Helper runs all the checks on a seam to make sure it is valid. // Returns the seam if OK, otherwise deletes the seam and returns nullptr. static SEAM* CheckSeam(int debug_level, int32_t blob_number, TWERD* word, TBLOB* blob, TBLOB* other_blob, const GenericVector& seams, SEAM* seam) { if (seam == nullptr || blob->outlines == nullptr || other_blob->outlines == nullptr || total_containment(blob, other_blob) || check_blob(other_blob) || !seam->ContainedByBlob(*blob) || !seam->ContainedByBlob(*other_blob) || any_shared_split_points(seams, seam) || !seam->PrepareToInsertSeam(seams, word->blobs, blob_number, false)) { word->blobs.remove(blob_number + 1); if (seam) { seam->UndoSeam(blob, other_blob); delete seam; seam = nullptr; #ifndef GRAPHICS_DISABLED if (debug_level) { if (debug_level >2) display_blob(blob, Red); tprintf("\n** seam being removed ** \n"); } #endif } else { delete other_blob; } return nullptr; } return seam; } /** * @name attempt_blob_chop * * Try to split the this blob after this one. Check to make sure that * it was successful. */ namespace tesseract { SEAM *Wordrec::attempt_blob_chop(TWERD *word, TBLOB *blob, int32_t blob_number, bool italic_blob, const GenericVector& seams) { if (repair_unchopped_blobs) preserve_outline_tree (blob->outlines); TBLOB *other_blob = TBLOB::ShallowCopy(*blob); /* Make new blob */ // Insert it into the word. word->blobs.insert(other_blob, blob_number + 1); SEAM *seam = nullptr; if (prioritize_division) { TPOINT location; if (divisible_blob(blob, italic_blob, &location)) { seam = new SEAM(0.0f, location); } } if (seam == nullptr) seam = pick_good_seam(blob); if (chop_debug) { if (seam != nullptr) seam->Print("Good seam picked="); else tprintf("\n** no seam picked *** \n"); } if (seam) { seam->ApplySeam(italic_blob, blob, other_blob); } seam = CheckSeam(chop_debug, blob_number, word, blob, other_blob, seams, seam); if (seam == nullptr) { if (repair_unchopped_blobs) restore_outline_tree(blob->outlines); if (allow_blob_division && !prioritize_division) { // If the blob can simply be divided into outlines, then do that. TPOINT location; if (divisible_blob(blob, italic_blob, &location)) { other_blob = TBLOB::ShallowCopy(*blob); /* Make new blob */ word->blobs.insert(other_blob, blob_number + 1); seam = new SEAM(0.0f, location); seam->ApplySeam(italic_blob, blob, other_blob); seam = CheckSeam(chop_debug, blob_number, word, blob, other_blob, seams, seam); } } } if (seam != nullptr) { // Make sure this seam doesn't get chopped again. seam->Finalize(); } return seam; } SEAM *Wordrec::chop_numbered_blob(TWERD *word, int32_t blob_number, bool italic_blob, const GenericVector& seams) { return attempt_blob_chop(word, word->blobs[blob_number], blob_number, italic_blob, seams); } SEAM *Wordrec::chop_overlapping_blob(const GenericVector& boxes, bool italic_blob, WERD_RES *word_res, int *blob_number) { TWERD *word = word_res->chopped_word; for (*blob_number = 0; *blob_number < word->NumBlobs(); ++*blob_number) { TBLOB *blob = word->blobs[*blob_number]; TPOINT topleft, botright; topleft.x = blob->bounding_box().left(); topleft.y = blob->bounding_box().top(); botright.x = blob->bounding_box().right(); botright.y = blob->bounding_box().bottom(); TPOINT original_topleft, original_botright; word_res->denorm.DenormTransform(nullptr, topleft, &original_topleft); word_res->denorm.DenormTransform(nullptr, botright, &original_botright); TBOX original_box = TBOX(original_topleft.x, original_botright.y, original_botright.x, original_topleft.y); bool almost_equal_box = false; int num_overlap = 0; for (int i = 0; i < boxes.size(); i++) { if (original_box.overlap_fraction(boxes[i]) > 0.125) num_overlap++; if (original_box.almost_equal(boxes[i], 3)) almost_equal_box = true; } TPOINT location; if (divisible_blob(blob, italic_blob, &location) || (!almost_equal_box && num_overlap > 1)) { SEAM *seam = attempt_blob_chop(word, blob, *blob_number, italic_blob, word_res->seam_array); if (seam != nullptr) return seam; } } *blob_number = -1; return nullptr; } } // namespace tesseract /** * @name any_shared_split_points * * Return true if any of the splits share a point with this one. */ int any_shared_split_points(const GenericVector& seams, SEAM *seam) { int length; int index; length = seams.size(); for (index = 0; index < length; index++) if (seam->SharesPosition(*seams[index])) return TRUE; return FALSE; } /** * @name check_blob * * @return true if blob has a non whole outline. */ int check_blob(TBLOB *blob) { TESSLINE *outline; EDGEPT *edgept; for (outline = blob->outlines; outline != nullptr; outline = outline->next) { edgept = outline->loop; do { if (edgept == nullptr) break; edgept = edgept->next; } while (edgept != outline->loop); if (edgept == nullptr) return 1; } return 0; } namespace tesseract { /** * @name improve_one_blob * * Finds the best place to chop, based on the worst blob, fixpt, or next to * a fragment, according to the input. Returns the SEAM corresponding to the * chop point, if any is found, and the index in the ratings_matrix of the * chopped blob. Note that blob_choices is just a copy of the pointers in the * leading diagonal of the ratings MATRIX. * Although the blob is chopped, the returned SEAM is yet to be inserted into * word->seam_array and the resulting blobs are unclassified, so this function * can be used by ApplyBox as well as during recognition. */ SEAM* Wordrec::improve_one_blob(const GenericVector& blob_choices, DANGERR *fixpt, bool split_next_to_fragment, bool italic_blob, WERD_RES* word, int* blob_number) { float rating_ceiling = MAX_FLOAT32; SEAM *seam = nullptr; do { *blob_number = select_blob_to_split_from_fixpt(fixpt); if (chop_debug) tprintf("blob_number from fixpt = %d\n", *blob_number); bool split_point_from_dict = (*blob_number != -1); if (split_point_from_dict) { fixpt->clear(); } else { *blob_number = select_blob_to_split(blob_choices, rating_ceiling, split_next_to_fragment); } if (chop_debug) tprintf("blob_number = %d\n", *blob_number); if (*blob_number == -1) return nullptr; // TODO(rays) it may eventually help to allow italic_blob to be true, seam = chop_numbered_blob(word->chopped_word, *blob_number, italic_blob, word->seam_array); if (seam != nullptr) return seam; // Success! if (blob_choices[*blob_number] == nullptr) return nullptr; if (!split_point_from_dict) { // We chopped the worst rated blob, try something else next time. rating_ceiling = blob_choices[*blob_number]->rating(); } } while (true); return seam; } /** * @name chop_one_blob * * Start with the current one-blob word and its classification. Find * the worst blobs and try to divide it up to improve the ratings. * Used for testing chopper. */ SEAM* Wordrec::chop_one_blob(const GenericVector& boxes, const GenericVector& blob_choices, WERD_RES* word_res, int* blob_number) { if (prioritize_division) { return chop_overlapping_blob(boxes, true, word_res, blob_number); } else { return improve_one_blob(blob_choices, nullptr, false, true, word_res, blob_number); } } /** * @name chop_word_main * * Classify the blobs in this word and permute the results. Find the * worst blob in the word and chop it up. Continue this process until * a good answer has been found or all the blobs have been chopped up * enough. The results are returned in the WERD_RES. */ void Wordrec::chop_word_main(WERD_RES *word) { int num_blobs = word->chopped_word->NumBlobs(); if (word->ratings == nullptr) { word->ratings = new MATRIX(num_blobs, wordrec_max_join_chunks); } if (word->ratings->get(0, 0) == nullptr) { // Run initial classification. for (int b = 0; b < num_blobs; ++b) { BLOB_CHOICE_LIST* choices = classify_piece(word->seam_array, b, b, "Initial:", word->chopped_word, word->blamer_bundle); word->ratings->put(b, b, choices); } } else { // Blobs have been pre-classified. Set matrix cell for all blob choices for (int col = 0; col < word->ratings->dimension(); ++col) { for (int row = col; row < word->ratings->dimension() && row < col + word->ratings->bandwidth(); ++row) { BLOB_CHOICE_LIST* choices = word->ratings->get(col, row); if (choices != nullptr) { BLOB_CHOICE_IT bc_it(choices); for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) { bc_it.data()->set_matrix_cell(col, row); } } } } } // Run Segmentation Search. BestChoiceBundle best_choice_bundle(word->ratings->dimension()); SegSearch(word, &best_choice_bundle, word->blamer_bundle); if (word->best_choice == nullptr) { // SegSearch found no valid paths, so just use the leading diagonal. word->FakeWordFromRatings(TOP_CHOICE_PERM); } word->RebuildBestState(); // If we finished without a hyphen at the end of the word, let the next word // be found in the dictionary. if (word->word->flag(W_EOL) && !getDict().has_hyphen_end(*word->best_choice)) { getDict().reset_hyphen_vars(true); } if (word->blamer_bundle != nullptr && this->fill_lattice_ != nullptr) { CallFillLattice(*word->ratings, word->best_choices, *word->uch_set, word->blamer_bundle); } if (wordrec_debug_level > 0) { tprintf("Final Ratings Matrix:\n"); word->ratings->print(getDict().getUnicharset()); } word->FilterWordChoices(getDict().stopper_debug_level); } /** * @name improve_by_chopping * * Repeatedly chops the worst blob, classifying the new blobs fixing up all * the data, and incrementally runs the segmentation search until a good word * is found, or no more chops can be found. */ void Wordrec::improve_by_chopping(float rating_cert_scale, WERD_RES* word, BestChoiceBundle* best_choice_bundle, BlamerBundle* blamer_bundle, LMPainPoints* pain_points, GenericVector* pending) { int blob_number; do { // improvement loop. // Make a simple vector of BLOB_CHOICEs to make it easy to pick which // one to chop. GenericVector blob_choices; int num_blobs = word->ratings->dimension(); for (int i = 0; i < num_blobs; ++i) { BLOB_CHOICE_LIST* choices = word->ratings->get(i, i); if (choices == nullptr || choices->empty()) { blob_choices.push_back(nullptr); } else { BLOB_CHOICE_IT bc_it(choices); blob_choices.push_back(bc_it.data()); } } SEAM* seam = improve_one_blob(blob_choices, &best_choice_bundle->fixpt, false, false, word, &blob_number); if (seam == nullptr) break; // A chop has been made. We have to correct all the data structures to // take into account the extra bottom-level blob. // Put the seam into the seam_array and correct everything else on the // word: ratings matrix (including matrix location in the BLOB_CHOICES), // states in WERD_CHOICEs, and blob widths. word->InsertSeam(blob_number, seam); // Insert a new entry in the beam array. best_choice_bundle->beam.insert(new LanguageModelState, blob_number); // Fixpts are outdated, but will get recalculated. best_choice_bundle->fixpt.clear(); // Remap existing pain points. pain_points->RemapForSplit(blob_number); // Insert a new pending at the chop point. pending->insert(SegSearchPending(), blob_number); // Classify the two newly created blobs using ProcessSegSearchPainPoint, // as that updates the pending correctly and adds new pain points. MATRIX_COORD pain_point(blob_number, blob_number); ProcessSegSearchPainPoint(0.0f, pain_point, "Chop1", pending, word, pain_points, blamer_bundle); pain_point.col = blob_number + 1; pain_point.row = blob_number + 1; ProcessSegSearchPainPoint(0.0f, pain_point, "Chop2", pending, word, pain_points, blamer_bundle); if (language_model_->language_model_ngram_on) { // N-gram evaluation depends on the number of blobs in a chunk, so we // have to re-evaluate everything in the word. ResetNGramSearch(word, best_choice_bundle, pending); blob_number = 0; } // Run language model incrementally. (Except with the n-gram model on.) UpdateSegSearchNodes(rating_cert_scale, blob_number, pending, word, pain_points, best_choice_bundle, blamer_bundle); } while (!language_model_->AcceptableChoiceFound() && word->ratings->dimension() < kMaxNumChunks); // If after running only the chopper best_choice is incorrect and no blame // has been yet set, blame the classifier if best_choice is classifier's // top choice and is a dictionary word (i.e. language model could not have // helped). Otherwise blame the tradeoff between the classifier and // the old language model (permuters). if (word->blamer_bundle != nullptr && word->blamer_bundle->incorrect_result_reason() == IRR_CORRECT && !word->blamer_bundle->ChoiceIsCorrect(word->best_choice)) { bool valid_permuter = word->best_choice != nullptr && Dict::valid_word_permuter(word->best_choice->permuter(), false); word->blamer_bundle->BlameClassifierOrLangModel(word, getDict().getUnicharset(), valid_permuter, wordrec_debug_blamer); } } /********************************************************************** * select_blob_to_split * * These are the results of the last classification. Find a likely * place to apply splits. If none, return -1. **********************************************************************/ int Wordrec::select_blob_to_split( const GenericVector& blob_choices, float rating_ceiling, bool split_next_to_fragment) { BLOB_CHOICE *blob_choice; int x; float worst = -MAX_FLOAT32; int worst_index = -1; float worst_near_fragment = -MAX_FLOAT32; int worst_index_near_fragment = -1; const CHAR_FRAGMENT **fragments = nullptr; if (chop_debug) { if (rating_ceiling < MAX_FLOAT32) tprintf("rating_ceiling = %8.4f\n", rating_ceiling); else tprintf("rating_ceiling = No Limit\n"); } if (split_next_to_fragment && blob_choices.size() > 0) { fragments = new const CHAR_FRAGMENT *[blob_choices.length()]; if (blob_choices[0] != nullptr) { fragments[0] = getDict().getUnicharset().get_fragment( blob_choices[0]->unichar_id()); } else { fragments[0] = nullptr; } } for (x = 0; x < blob_choices.size(); ++x) { if (blob_choices[x] == nullptr) { delete[] fragments; return x; } else { blob_choice = blob_choices[x]; // Populate fragments for the following position. if (split_next_to_fragment && x+1 < blob_choices.size()) { if (blob_choices[x + 1] != nullptr) { fragments[x + 1] = getDict().getUnicharset().get_fragment( blob_choices[x + 1]->unichar_id()); } else { fragments[x + 1] = nullptr; } } if (blob_choice->rating() < rating_ceiling && blob_choice->certainty() < tessedit_certainty_threshold) { // Update worst and worst_index. if (blob_choice->rating() > worst) { worst_index = x; worst = blob_choice->rating(); } if (split_next_to_fragment) { // Update worst_near_fragment and worst_index_near_fragment. bool expand_following_fragment = (x + 1 < blob_choices.size() && fragments[x+1] != nullptr && !fragments[x+1]->is_beginning()); bool expand_preceding_fragment = (x > 0 && fragments[x-1] != nullptr && !fragments[x-1]->is_ending()); if ((expand_following_fragment || expand_preceding_fragment) && blob_choice->rating() > worst_near_fragment) { worst_index_near_fragment = x; worst_near_fragment = blob_choice->rating(); if (chop_debug) { tprintf("worst_index_near_fragment=%d" " expand_following_fragment=%d" " expand_preceding_fragment=%d\n", worst_index_near_fragment, expand_following_fragment, expand_preceding_fragment); } } } } } } delete[] fragments; // TODO(daria): maybe a threshold of badness for // worst_near_fragment would be useful. return worst_index_near_fragment != -1 ? worst_index_near_fragment : worst_index; } /********************************************************************** * select_blob_to_split_from_fixpt * * Given the fix point from a dictionary search, if there is a single * dangerous blob that maps to multiple characters, return that blob * index as a place we need to split. If none, return -1. **********************************************************************/ int Wordrec::select_blob_to_split_from_fixpt(DANGERR *fixpt) { if (!fixpt) return -1; for (int i = 0; i < fixpt->size(); i++) { if ((*fixpt)[i].begin + 1 == (*fixpt)[i].end && (*fixpt)[i].dangerous && (*fixpt)[i].correct_is_ngram) { return (*fixpt)[i].begin; } } return -1; } } // namespace tesseract /********************************************************************** * total_containment * * Check to see if one of these outlines is totally contained within * the bounding box of the other. **********************************************************************/ int16_t total_containment(TBLOB *blob1, TBLOB *blob2) { TBOX box1 = blob1->bounding_box(); TBOX box2 = blob2->bounding_box(); return box1.contains(box2) || box2.contains(box1); }