/****************************************************************************** ** Filename: xform2d.c ** Purpose: Library routines for performing 2D point transformations ** Author: Dan Johnson ** History: Fri Sep 22 09:54:17 1989, DSJ, Created. ** ** (c) Copyright Hewlett-Packard Company, 1988. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ******************************************************************************/ /**---------------------------------------------------------------------------- Include Files and Type Defines ----------------------------------------------------------------------------**/ #include "xform2d.h" #include /**---------------------------------------------------------------------------- Public Code ----------------------------------------------------------------------------**/ /*---------------------------------------------------------------------------*/ void RotateMatrix(MATRIX_2D_PTR Matrix, FLOAT32 Angle) { /* ** Parameters: ** Matrix transformation matrix to rotate ** Angle angle to rotate matrix ** Globals: none ** Operation: ** Rotate the coordinate system (as specified by Matrix) about ** its origin by Angle radians. In matrix notation the ** effect is as follows: ** ** Matrix = R X Matrix ** ** where R is the following matrix ** ** cos Angle sin Angle 0 ** -sin Angle cos Angle 0 ** 0 0 1 ** Return: none ** Exceptions: none ** History: 7/27/89, DSJ, Create. */ FLOAT32 Cos, Sin; FLOAT32 NewA, NewB; Cos = cos ((double) Angle); Sin = sin ((double) Angle); NewA = Matrix->a * Cos + Matrix->c * Sin; NewB = Matrix->b * Cos + Matrix->d * Sin; Matrix->c = Matrix->a * -Sin + Matrix->c * Cos; Matrix->d = Matrix->b * -Sin + Matrix->d * Cos; Matrix->a = NewA; Matrix->b = NewB; } /* RotateMatrix */